Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Full Reversal of Pb++ Block of L-Type Ca++ Channels Requires Treatment with Heavy Metal Antidotes

Juan Bernal, Jung-Ha Lee, Leanne L. Cribbs and Edward Perez-Reyes
Journal of Pharmacology and Experimental Therapeutics July 1997, 282 (1) 172-180;
Juan Bernal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jung-Ha Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leanne L. Cribbs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward Perez-Reyes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The mechanisms of Pb++ block and unblock of L-type Ca++ channel currents were measured using ventricular myocytes or the cloned channel. The cloned channel was expressed in either Xenopus laevis oocytes or human embryonic kidney cells (HEK 293, stable transfectants). The threshold for Pb++ block was 1 nM, and the apparent IC50value was 152 nM in oocytes and 169 nM in HEK 293 cells. Pb++ block was dependent on the composition of the external recording solution but not dependent on the subunit composition of the channel. Pb++ block was voltage dependent, with little block observed at negative test potentials using low concentrations of Pb++. Strong depolarizations (>+100 mV) reversed Pb++ block, allowing measurement of reblock kinetics. Reblock was fast (τ = 11 msec), as measured during a +20-mV test pulse. Simple washout did not completely reverse Pb++block, especially after exposure to concentrations of >100 nM. Full recovery could only be observed after treatment with heavy metal antidotes such as meso-2,3-dimercaptosuccinic acid, 2,3-dimercapto-1-propanesulfonic acid and EDTA. These results suggest that Pb++ blocks voltage-gated Ca++ channels by two mechanisms and that full reversal of lead block requires chelator treatment.

Footnotes

  • Send reprint requests to: Edward Perez-Reyes, Ph.D., Department of Physiology, Loyola University Medical Center, Maywood, IL 60153. E-mail eperez{at}luc.edu

  • ↵1 This work was supported in part by the National Institutes of Health and the American Heart Association (E.P.R.). E.P.R. is an Established Investigator of the American Heart Association.

  • ↵2 E. Perez-Reyes and L. L. Cribbs, unpublished observations.

  • Abbreviations:
    DMSA
    meso-2,3-dimercaptosuccinic acid
    DMPS
    2,3-dimercapto-1-propanesulfonic acid
    TEA
    tetraethylammonium
    NMG
    N-methyl-glucamine
    HEPES
    4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
    HEK
    human embryonic kidney
    • Received September 4, 1996.
    • Accepted March 7, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 282, Issue 1
1 Jul 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Full Reversal of Pb++ Block of L-Type Ca++ Channels Requires Treatment with Heavy Metal Antidotes
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Full Reversal of Pb++ Block of L-Type Ca++ Channels Requires Treatment with Heavy Metal Antidotes

Juan Bernal, Jung-Ha Lee, Leanne L. Cribbs and Edward Perez-Reyes
Journal of Pharmacology and Experimental Therapeutics July 1, 1997, 282 (1) 172-180;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Full Reversal of Pb++ Block of L-Type Ca++ Channels Requires Treatment with Heavy Metal Antidotes

Juan Bernal, Jung-Ha Lee, Leanne L. Cribbs and Edward Perez-Reyes
Journal of Pharmacology and Experimental Therapeutics July 1, 1997, 282 (1) 172-180;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Inhibition of Voltage-Dependent Sodium Channels by the Anticonvulsant γ-Aminobutyric Acid Type A Receptor Modulator, 3-Benzyl-3-Ethyl-2-Piperidinone
  • Antagonism of an Adenosine/ATP Receptor in FollicularXenopus Oocytes
  • Toxin and Subunit Specificity of Blocking Affinity of Three Peptide Toxins for Heteromultimeric, Voltage-Gated Potassium Channels Expressed in Xenopus Oocytes
Show more CELLULAR AND MOLECULAR PHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics