Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherCHEMOTHERAPY/GENE THERAPY

Heme Polymerase Activity and the Stage Specificity of Antimalarial Action of Chloroquine

Augustine U. Orjih
Journal of Pharmacology and Experimental Therapeutics July 1997, 282 (1) 108-112;
Augustine U. Orjih
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Plasmodium falciparum lysate, prepared from 2.7 × 107 ring-infected erythrocytes and incubated with hemoglobin in sodium acetate at pH 5, incorporated a mean of 1.6 nmol of ferriprotoporphyrin IX (FP) into hemozoin in 18 to 22 hr. A similar preparation of trophozoite lysate incorporated a mean of 3.6 nmol of FP into hemozoin in 4 to 6 hr. These findings indicate differences between heme polymerase activity (hemozoin production) at the ring and trophozoite stages of malaria parasites. Intracellular hemozoin production was 90% inhibited at the ring and trophozoite stages by 0.5 and 7 nmol of chloroquine/106 infected erythrocytes. respectively. The inhibition killed the rings but not the trophozoites, suggesting that mature parasites may have a mechanism for protecting themselves against chloroquine-FP toxicity.

Footnotes

  • Send reprint requests to: Dr. Augustine U. Orjih, Kuwait University, Faculty of Allied Health Sciences, MLS Department, P.O. Box 31740, Sulaibikhat 90805, Kuwait, Arabian Gulf.

  • Abbreviation:
    FP
    ferriprotoporphyrin IX
    • Received October 8, 1996.
    • Accepted March 6, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 282, Issue 1
1 Jul 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Heme Polymerase Activity and the Stage Specificity of Antimalarial Action of Chloroquine
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherCHEMOTHERAPY/GENE THERAPY

Heme Polymerase Activity and the Stage Specificity of Antimalarial Action of Chloroquine

Augustine U. Orjih
Journal of Pharmacology and Experimental Therapeutics July 1, 1997, 282 (1) 108-112;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherCHEMOTHERAPY/GENE THERAPY

Heme Polymerase Activity and the Stage Specificity of Antimalarial Action of Chloroquine

Augustine U. Orjih
Journal of Pharmacology and Experimental Therapeutics July 1, 1997, 282 (1) 108-112;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Both the Immunosuppressant SR31747 and the Antiestrogen Tamoxifen Bind to an Emopamil-Insensitive Site of Mammalian Δ8-Δ7 Sterol Isomerase
  • Effect of the Mdr1a P-Glycoprotein Gene Disruption on the Tissue Distribution of SDZ PSC 833, a Multidrug Resistance-Reversing Agent, in Mice
  • Role of Wild-Type p53 on the Antineoplastic Activity of Temozolomide Alone or Combined with Inhibitors of Poly(ADP-Ribose) Polymerase
Show more CHEMOTHERAPY/GENE THERAPY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics