Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherNEUROPHARMACOLOGY

Interactions of (+)- and (−)-8- and 7-Hydroxy-2-(Di-n-Propylamino)tetralin at Human (h)D3, hD2 and h Serotonin1A Receptors and Their Modulation of the Activity of Serotoninergic and Dopaminergic Neurones in Rats

F. Lejeune, A. Newman-Tancredi, V. Audinot and M. J. Millan
Journal of Pharmacology and Experimental Therapeutics March 1997, 280 (3) 1241-1249;
F. Lejeune
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Newman-Tancredi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Audinot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. J. Millan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The aminotetralins, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 7-OH-DPAT behave as preferential agonists at serotonin (5-HT)1A and dopamine D3 and D2receptors, respectively. In our study, we evaluated the influence of their (+)- and (-) isomers on the electrical activity of serotoninergic neurones of the dorsal raphe nucleus (DRN), which bear 5-HT1A autoreceptors, and of dopaminergic neurones of the ventral tegmental area (VTA), which possess inhibitory D3and D2 receptors. These actions were compared to theirin vitro interactions with cloned, human (h)5-HT1A, hD3 and hD2 receptors. In binding studies, racemic 8-OH-DPAT showed 100-fold selectivity for h5-HT1A vs. hD2 and hD3 receptors and there was little difference between its (+)- and (-)-isomers either in terms of their potency at 5-HT1A receptors or of their selectivity at 5-HT1A vs hD2/hD3 sites. Nevertheless, the (+)-isomer was markedly more efficacious than its (-)-counterpart in stimulating the binding of guanosine 5′-O-(3-[35S]thiotriphosphate) ([35S]-GTPγS) at h5-HT1A receptors, a measure of coupling to G-proteins; 90 vs. 57% maximal stimulation respectively, relative to 5-HT = 100%. Also the (+)-isomer was ca. 3-fold more potent than the (-)-isomer in inhibiting the firing rate of DRN neurones. These actions were abolished by the 5-HT1Aantagonist, (-)-tertatolol, but unaffected by the hD2/hD3 antagonist, haloperidol. Whereas (+)-8-OH-DPAT stimulated VTA neurone firing with a bell-shaped dose response curve, the (-)-isomer only inhibited VTA firing. The (+)-isomer-induced stimulation was blocked by (-)-tertatolol but not haloperidol, whereas the (-)-isomer-induced inhibition was abolished by haloperidol and unaffected by (-)-tertatolol. In contrast to 8-OH-DPAT, the (+)- and (-)-isomers of 7-OH-DPAT showed marked stereoselectivity inasmuch as the latter bound with 20-fold less potency than the former at hD3 and, at higher concentrations, hD2receptors. Correspondingly, (+)-7-OH-DPAT was 20-fold more potent than (-)-7-OH-DPAT in reducing VTA firing. Concerning 5-HT1Areceptors, the (+)-isomer showed 20-fold lower affinity than at hD3 receptors and, accordingly, it inhibited DRN firing at 20-fold higher doses than for inhibition of VTA firing. (-)-7-OH-DPAT showed even less (5-fold) selectivity for hD3 vs. 5-HT1A sites and for inhibition of VTA vs. DRN firing. The inhibition of VTA and DRN neurone firing by (+)-7-OH-DPAT was abolished by haloperidol and (-)-tertatolol, respectively. Finally, in line with this inhibition of DRN firing, both (+)- and (-)-7-OH-DPAT showed substantial efficacy ([35S]-GTPγS binding, 76 and 53%, respectively) at h5-HT1A receptors. In conclusion, for these substituted aminotetralins, stereospecificity is a more marked feature of interactions at hD3 (and hD2) than at h5-HT1A receptors and is more pronounced for 7- as compared to 8-OH-DPAT. Neither (+)- nor (-)-7-OH-DPAT show substantial selectivity for hD3 vs. 5-HT1Areceptors and their inhibition of the firing of VTA as compared to DRN neurones is mediated by hD3/hD2 and 5-HT1A receptors, respectively. Finally, VTA neurones are stimulated by (+)-8-OH-DPAT via 5-HT1A receptors and inhibited by (-)-8-OH-DPAT via hD3 and/or hD2receptors.

Footnotes

  • Send reprint requests to: Dr. Mark J. Millan, Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290–Croissy-sur-Seine, France.

  • Abbreviations:
    DA
    dopamine
    5-HT
    serotonin
    DRN
    dorsal raphe nucleus
    SNPC
    substantia nigra pars compacta
    VTA
    ventral tegmental area
    CHO
    Chinese hamster ovary
    [35S]GTPγS
    guanosine 5′-O-(3-[35-S]thiotriphosphate)
    • Received June 25, 1996.
    • Accepted November 7, 1996.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 280, Issue 3
1 Mar 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interactions of (+)- and (−)-8- and 7-Hydroxy-2-(Di-n-Propylamino)tetralin at Human (h)D3, hD2 and h Serotonin1A Receptors and Their Modulation of the Activity of Serotoninergic and Dopaminergic Neurones in Rats
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherNEUROPHARMACOLOGY

Interactions of (+)- and (−)-8- and 7-Hydroxy-2-(Di-n-Propylamino)tetralin at Human (h)D3, hD2 and h Serotonin1A Receptors and Their Modulation of the Activity of Serotoninergic and Dopaminergic Neurones in Rats

F. Lejeune, A. Newman-Tancredi, V. Audinot and M. J. Millan
Journal of Pharmacology and Experimental Therapeutics March 1, 1997, 280 (3) 1241-1249;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherNEUROPHARMACOLOGY

Interactions of (+)- and (−)-8- and 7-Hydroxy-2-(Di-n-Propylamino)tetralin at Human (h)D3, hD2 and h Serotonin1A Receptors and Their Modulation of the Activity of Serotoninergic and Dopaminergic Neurones in Rats

F. Lejeune, A. Newman-Tancredi, V. Audinot and M. J. Millan
Journal of Pharmacology and Experimental Therapeutics March 1, 1997, 280 (3) 1241-1249;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Novel Neuroprotectant Neurosteroids for OP Intoxication
  • Disease-Modifying Effects of Neurosteroids in Post-SE Models
  • Lacosamide and Rufinamide Against SE
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics