Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Enhanced inhibition of microsomal cytochrome P450 3A2 in rat liver during diltiazem biotransformation.

M Murray and A M Butler
Journal of Pharmacology and Experimental Therapeutics December 1996, 279 (3) 1447-1452;
M Murray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A M Butler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pharmacokinetic drug interactions involving the calcium channel blocker diltiazem (DTZ) have been attributed to inhibition of microsomal cytochrome P450 (P450)-mediated drug oxidation. Accumulation of certain DTZ metabolites during dosage with the drug, as well as dose-related differences in DTZ pharmacokinetics, suggests that DTZ metabolites may also participate in P450 inhibition. The present study evaluated a series of putative DTZ metabolites as inhibitors of major constitutive P450s in rat liver in vitro, in relation to DTZ biotransformation. The principal finding to emerge was that the N-demethylated metabolite of DTZ was a more potent competitive inhibitor than DTZ of CYP3A2-dependent testosterone 6 beta-hydroxylation. This P450 appeared to be the preferred target for inhibition, because the observed K/K(m) ratio for inhibition of CYP3A2-dependent steroid hydroxylation was approximately 4- and 100-fold lower than those for CYP2C11 and CYP2A1-dependent pathways, respectively. It was also established that N-desmethyl-DTZ was a major metabolite formed during microsomal DTZ biotransformation in rat liver in vitro. The other primary metabolites, desacetyl-DTZ and O-desmethyl-DTZ, were ineffective inhibitors of any pathways of steroid oxidation by P450s, but several other potential metabolites, which were not detected in microsomal incubations, also inhibited P450 activity. Consistent with previous reports, there was no evidence of P450 inactivation or complexation by DTZ, but the drug and its N-desmethyl metabolite generated binding interactions with ferric P450 in rat hepatic microsomes. Considered together, the findings of the present study establish that N-desmethyl-DTZ is a preferential inhibitor of CYP3A2 in rat hepatic microsomes, with greater potency than the parent drug. This is consistent with clinical reports in which this metabolite accumulates during multiple-dose therapy with DTZ. The competitive nature of the inhibitory interaction suggests that the eventual elimination of N-desmethyl-DTZ should restore normal hepatic oxidation capacity.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 279, Issue 3
1 Dec 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enhanced inhibition of microsomal cytochrome P450 3A2 in rat liver during diltiazem biotransformation.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Enhanced inhibition of microsomal cytochrome P450 3A2 in rat liver during diltiazem biotransformation.

M Murray and A M Butler
Journal of Pharmacology and Experimental Therapeutics December 1, 1996, 279 (3) 1447-1452;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Enhanced inhibition of microsomal cytochrome P450 3A2 in rat liver during diltiazem biotransformation.

M Murray and A M Butler
Journal of Pharmacology and Experimental Therapeutics December 1, 1996, 279 (3) 1447-1452;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics