Abstract
We have shown previously that intrathecal (i.t.) administration of the combination of delta 9-tetrahydrocannabinol (THC) and morphine results in a greater than additive antinociceptive effect. Similarly, pretreating mice with subthreshold doses of the kappa agonist, Dynorphin A (1-8), produced a parallel, leftward shift of the morphine dose-response curve, shifting the ED50 of morphine from 0.32 to 0.04 micrograms/mouse. A cocktail of enzyme inhibitors used to prevent the metabolism of Dynorphin A (1-8) into the delta receptor agonist, [Leu5]-enkephalin, attenuated the enhancement of morphine-induced antinociception by delta 9-THC. The enhanced antinociceptive effect observed after i.t. administration of the combination of delta 9-THC and morphine was also attenuated with antisera to Dynorphin A (1-8) (10 micrograms/ mouse) and Dynorphin A (1-13) (10 micrograms/mouse). Antisera to Dynorphin A (1-8) and Dynorphin A (1-17) blocked the antinociceptive effects of delta 9-THC (50 micrograms i.t.) without producing any significant alteration in the hypothermic and cataleptic effects or hypomotility produced by delta 9-THC. The antinociception produced by the combination of delta 9-THC and morphine was blocked by the kappa antagonist, nor-binaltorphimine (2 micrograms/ mouse), as well as the delta antagonist, naltrindole (5 micrograms/ mouse). Thus, the antinociception of morphine, which is mediated predominately by mu receptors, may be enhanced by delta 9-THC through the activation of kappa and delta receptors.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|