Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135.

C A Fornal, C W Metzler, R A Gallegos, S C Veasey, A C McCreary and B L Jacobs
Journal of Pharmacology and Experimental Therapeutics August 1996, 278 (2) 752-762;
C A Fornal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C W Metzler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Gallegos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S C Veasey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A C McCreary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B L Jacobs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We reported previously that pharmacological blockade of somatodendritic 5-hydroxytryptamine (5-HT)1A autoreceptors with spiperone, a nonselective 5-HT1A antagonist, increases the spontaneous firing rate of central serotonergic neurons in awake cats. The present study examined the effects of systemic administration of two reportedly selective 5-HT1A receptor antagonists, (S)-WAY-100135 {N-tert-butyl-3-[4-(2-methoxyphenyl) piperazin-1-yl]-2-phenylpropanamide} and its more potent analog WAY-100635 {N-[2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide}, on the single-unit activity of serotonergic neurons in the dorsal raphe nucleus of freely moving cats. In addition, we assessed the antagonist action of these compounds at the 5-HT1A autoreceptor by examining their ability to block the inhibition of serotonergic neuronal activity produced by systemic administration of 8-hydroxy-2-(di-n-propylamino)tetralin, a highly selective 5-HT1A agonist. Administration of (S)-WAY-100135 (0.025-1.0 mg/kg i.v.) moderately depressed neuronal activity at all doses tested. In contrast, administration of WAY-100635 (0.025-0.5 mg/kg i.v.) significantly increased neuronal activity. The stimulatory action of WAY-100635, like that of spiperone, was evident during wakefulness (when serotonergic neurons typically display a relatively high level of activity) but not during sleep (when serotonergic neurons display little or no spontaneous activity). Pretreatment with (S)-WAY-100135 (0.5 mg/kg i.v.) weakly attenuated the inhibitory action of 8-hydroxy-2-(di-n-propylamino)tetralin. In contrast, WAY-100635 at doses as low as 0.1 mg/kg i.v. completely blocked the action of 8-hydroxy-2-(di-n-propylamino)tetralin. The antagonist action of WAY-100635 at 5-HT1A autoreceptors closely paralleled its ability to increase neuronal activity. Overall, WAY-100635 appears to act as a selective 5-HT1A antagonist, whereas (S)-WAY-100135 does not. The results obtained with WAY-100635 confirm our previous findings obtained with spiperone and further support the hypothesis that 5-HT1A autoreceptor-mediated feedback inhibition operates under physiological conditions.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 278, Issue 2
1 Aug 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135.

C A Fornal, C W Metzler, R A Gallegos, S C Veasey, A C McCreary and B L Jacobs
Journal of Pharmacology and Experimental Therapeutics August 1, 1996, 278 (2) 752-762;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135.

C A Fornal, C W Metzler, R A Gallegos, S C Veasey, A C McCreary and B L Jacobs
Journal of Pharmacology and Experimental Therapeutics August 1, 1996, 278 (2) 752-762;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics