Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Electrophysiological effects of N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide (WAY 100635) on dorsal raphe serotonergic neurons and CA1 hippocampal pyramidal cells in vitro.

R Corradetti, E Le Poul, N Laaris, M Hamon and L Lanfumey
Journal of Pharmacology and Experimental Therapeutics August 1996, 278 (2) 679-688;
R Corradetti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Le Poul
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Laaris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Hamon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Lanfumey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The aim of the present study was to examine the effects of N-(2-(4-2-methoxphenyl)-1-piperazinyl)ethyl)-N-(2-pyridnyl) cyclohexane carboxamide (WAY 100635) on 5-HT1A receptor-mediated responses in the dorsal raphe nucleus (DRN) and the CA1 hippocampal region. In DRN slices superfused with WAY 100635 (10 nM), the majority of putative 5-HT neurons increased their firing rate (13 +/- 2% of baseline rate). In addition, WAY 100635 completely prevented the decrease in firing rate produced by 5-HT (3-15 microM), 8-OH-DPAT (10 nM), 5-carboxamidotryptamine (20 nM) and lesopitron (100 nM). The antagonism exerted by WAY 100635 (IC50 = 0.95 +/- 0.12 nM against 15 microM 5-HT) was fully surmounted by increasing the concentration of 5-HT to 300 microM. In hippocampal slices, WAY 100635 (0.5-10 nM) did not alter the resting membrane potential or the membrane input resistance of intracellularly recorded CA1 pyramidal cells. However, WAY 100635 completely prevented (IC50 = 0.9-1.7 nM) the hyperpolarization and the decrease in membrane input resistance produced by 5-HT (15-30 microM) and by 5-carboxamidotryptamine (50-300 nM). In contrast, WAY 100635 affected neither the block of action potential frequency adaptation and slow afterhyperpolarization produced by 5-HT (15 microM) nor the hyperpolarization and decrease in membrane input resistance evoked by bath application of GABA(B) receptor agonist baclofen (10 microM). The cumulative concentration-hyperpolarization curve for 5-carboxamidotryptamine (3 nM-10 microM) was shifted to the right by WAY 100635 (apparent Kb = 0.23 +/- 0.07 nM), and the latter drug also reduced the maximal response to the agonist. These data show the WAY 100635 is a potent antagonist at 5-HT1A receptors, both in the DRN and in the CA1 region of the hippocampus. The antagonism is apparently competitive in the DRN and partly noncompetitive in the hippocampus. Kinetic characteristics of the antagonist-receptor interactions might account for these regional differences.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 278, Issue 2
1 Aug 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Electrophysiological effects of N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide (WAY 100635) on dorsal raphe serotonergic neurons and CA1 hippocampal pyramidal cells in vitro.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Electrophysiological effects of N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide (WAY 100635) on dorsal raphe serotonergic neurons and CA1 hippocampal pyramidal cells in vitro.

R Corradetti, E Le Poul, N Laaris, M Hamon and L Lanfumey
Journal of Pharmacology and Experimental Therapeutics August 1, 1996, 278 (2) 679-688;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Electrophysiological effects of N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide (WAY 100635) on dorsal raphe serotonergic neurons and CA1 hippocampal pyramidal cells in vitro.

R Corradetti, E Le Poul, N Laaris, M Hamon and L Lanfumey
Journal of Pharmacology and Experimental Therapeutics August 1, 1996, 278 (2) 679-688;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics