Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Regional distribution and characterization of [3H]dextrorphan binding sites in rat brain determined by quantitative autoradiography.

J E Roth, T F Murray and P H Franklin
Journal of Pharmacology and Experimental Therapeutics June 1996, 277 (3) 1823-1836;
J E Roth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T F Murray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P H Franklin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The pharmacologic specificity and anatomic distribution of [3H]dextrorphan recognition sites in the rat brain was characterized by quantitative autoradiography. Equilibrium saturation analysis indicated that [3H]dextrorphan labeled a single population of high affinity binding sites. These sites are heterogeneously distributed throughout rat forebrain with the following order of binding densities: hippocampal formation > cerebral cortex > thalamic nuclei > striatum. The association rate of [3H]dextrorphan with its binding site in area stratum radiatum of CA1 is accelerated by the addition of glycine and glutamate. [3H]Dextrorphan binding is, however, relatively insensitive to glycine and glutamate under equilibrium conditions, despite extensive prewashing procedures to deplete endogenous levels of these substances. The competitive N-methyl-D-aspartate (NMDA) antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) and the glycine site antagonist 7-chlorokynurenic acid completely inhibit specific [3H]dextrorphan binding. D-AP5 suppresses [3H]dextrorphan binding in a regionally distinctive manner; a population of binding sites is weakly inhibited by D-AP5 in the lateral thalamic regions, whereas D-AP5 potently inhibits [3H]dextrorphan binding in the cerebral cortex. The rank order of potencies of an array of noncompetitive antagonists to inhibit [3H]dextrorphan binding unambiguously displays the pharmacologic profile of the noncompetitive antagonist domain of the NMDA receptor-channel complex. Furthermore, the distribution of [3H]dextrorphan binding sites in slide-mounted tissue appears qualitatively similar to the distribution of NMDA receptors previously reported using NMDA-displacement of [3H]glutamate, [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne (MK-801) and [3H]1-[1-(2-thienyl)cyclohexyl]-piperidine (TCP) in most brain areas examined except the cerebellum. The molecular layer of the cerebellum displays a particularly high density of [3H]dextrorphan binding sites. The regional distribution of [3H]dextrorphan binding sites in rat brain does not correspond to the reported distributions of [3H]dextromethorphan or sigma binding sites.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 277, Issue 3
1 Jun 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regional distribution and characterization of [3H]dextrorphan binding sites in rat brain determined by quantitative autoradiography.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Regional distribution and characterization of [3H]dextrorphan binding sites in rat brain determined by quantitative autoradiography.

J E Roth, T F Murray and P H Franklin
Journal of Pharmacology and Experimental Therapeutics June 1, 1996, 277 (3) 1823-1836;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Regional distribution and characterization of [3H]dextrorphan binding sites in rat brain determined by quantitative autoradiography.

J E Roth, T F Murray and P H Franklin
Journal of Pharmacology and Experimental Therapeutics June 1, 1996, 277 (3) 1823-1836;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics