Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Selective mechanism-based inactivation of rat CYP2D by 4-allyloxymethamphetamine.

L Y Lin, M Fujimoto, E W Distefano, D A Schmitz, A Jayasinghe and A K Cho
Journal of Pharmacology and Experimental Therapeutics May 1996, 277 (2) 595-603;
L Y Lin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Fujimoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E W Distefano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D A Schmitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Jayasinghe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A K Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The high selectivity of amphetamine and its derivatives for CYP2D-mediated oxidations suggested the use of the phenylisopropylamine skeleton as a template for a selective inhibitor of this important enzyme. Accordingly, 4-allyloxymethamphetamine-amine (ALLMA) was synthesized and its ability to selectively inactivate CYP2D was investigated both in in vitro and in vivo experiments. Incubation studies with rat liver microsomes demonstrated that this compound suppressed the CYP2D-mediated methylenedioxymethamphetamine (MDMA) demethylation in time- and dose-dependent manner and that the inhibition required the presence of NADPH. The development of irreversible inhibition was associated with oxidation at position 4 of the aromatic ring, the common site of CYP2D-mediated oxidation of this group of compounds. In in vivo studies doses of ALLMA (1-10 mg/kg) were administered to adult male Sprague-Dawley rats and liver microsomes were obtained 3 hr later. Methamphetamine p-hydroxylation and low Km MDMA demethylation activities, both mediated by CYP2D, were reduced by more than 80% after a dose of 10 mg/kg. Cytochrome P-450 reactions attributed to P-450s other than CYP2D, such as aniline p-hydroxylation, the high Km system of MDMA demethylation and the N-demethylation of methamphetamine, benzphetamine, aminopyrine and erythromycin, all appeared to be minimally affected. The importance of aromatic ring oxidation in the metabolism is such that inhibition of CYP2D would be expected to cause a significant change in the pharmacokinetics of these compounds. The kinetics of MDMA metabolic activity in microsomes from ALLMA-pretreated rats were comparable to those from female Dark-Agouti rats, an animal model for CYP2D1 deficiency.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 277, Issue 2
1 May 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Selective mechanism-based inactivation of rat CYP2D by 4-allyloxymethamphetamine.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Selective mechanism-based inactivation of rat CYP2D by 4-allyloxymethamphetamine.

L Y Lin, M Fujimoto, E W Distefano, D A Schmitz, A Jayasinghe and A K Cho
Journal of Pharmacology and Experimental Therapeutics May 1, 1996, 277 (2) 595-603;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Selective mechanism-based inactivation of rat CYP2D by 4-allyloxymethamphetamine.

L Y Lin, M Fujimoto, E W Distefano, D A Schmitz, A Jayasinghe and A K Cho
Journal of Pharmacology and Experimental Therapeutics May 1, 1996, 277 (2) 595-603;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics