Abstract
The present study has examined the glycine/N-methyl-D-aspartate antagonist, L-701-324 [7-chloro-4-hydroxy-3-(3-phenoxy)-phenyl-2 (H)quinolone] in rodent behavioral tests commonly used to predict antipsychotic potential and side effect liability in humans. Pretreatment with L-701,324 dose-dependently antagonized amphetamine-induced hyperactivity in the mouse (ED50 = 1.12 +/- 0.45 mg/kg p.o.), an effect which was similar to that of the classical neuroleptic, haloperidol, and the atypical neuroleptic, clozapine. In addition, p.o. administration of L-701,324 (2.5 or 5 mg/kg) attenuated the hyperactivity response induced by amphetamine infusion into the rat nucleus accumbens. In contrast to haloperidol, however, stereotyped sniffing and licking/biting, induced by either the systemic administration of apomorphine or infusion of amphetamine into the striatum, was not altered in rats pretreated with L-701,324 (30 or 100 mg/kg p.o.). Furthermore, L-701,324 failed to impair spontaneous locomotor activity or induce catalepsy in the mouse at doses > or = 100 mg/kg. Although a significant reduction in spontaneous activity was observed in rats pretreated with L-701,324, the minimum effective dose (10 mg/kg p.o.) was 2-fold greater than that which abolished amphetamine-induced hyperactivity in this species. Thus, L-701,324 selectively blocks behaviors associated with the activation of the mesolimbic dopamine system suggesting that glycine/N-methyl-D-aspartate receptor antagonists may offer a novel approach to the treatment of schizophrenia in humans.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|