Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Characterization of CYP2A6 involved in 3'-hydroxylation of cotinine in human liver microsomes.

M Nakajima, T Yamamoto, K Nunoya, T Yokoi, K Nagashima, K Inoue, Y Funae, N Shimada, T Kamataki and Y Kuroiwa
Journal of Pharmacology and Experimental Therapeutics May 1996, 277 (2) 1010-1015;
M Nakajima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Yamamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Nunoya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Yokoi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Nagashima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Inoue
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Funae
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Shimada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Kamataki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kuroiwa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nicotine is primarily metabolized to cotinine, and cotinine is further metabolized to trans-3'-hydroxycotinine in human liver, which is a major metabolite of nicotine in humans. We studied the formation of trans-3'-hydroxycotinine from cotinine in human liver microsomes. trans-3'-Hydroxycotinine formation demonstrated single enzyme Michaelis-Menten kinetics (Km, 234.5 +/- 26.8 MicroM; Vmax, 37.2 +/- 2.4 pmol/min/mg protein). Significant correlation (r = .967, P < .001) between cotinine 3'-hydroxylase activities at low (50 microM) and high (1 microM) cotinine concentrations in 20 human liver microsomes suggested the contribution of a single enzyme to cotinine 3'-hydroxylation. The cotinine 3'-hydroxylase activity correlated significantly with immunoreactive cytochrome P450 (CYP)2A6 contents (r = .756, P < .01) and coumarin 7-hydroxylase activity (r = .887, P < .001). The cotinine 3'-hydroxylase activity was inhibited by coumarin, alpha-naphthoflavone, chlorzoxazone and anti-rat CYP2A1 antibodies. Microsomes of B-lymphoblastoid cells expressing human CYP2A6 exhibited cotinine 3'-hydroxylase activity. The Km value of the expressed CYP2A6 (264.7 microM) was almost identical to that of human liver microsomes. In conclusion, cotinine 3'-hydroxylation appears to be catalyzed solely by CYP2A6 in humans. Cotinine is a candidate for a new substrate for CYP2A6 in humans.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 277, Issue 2
1 May 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of CYP2A6 involved in 3'-hydroxylation of cotinine in human liver microsomes.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization of CYP2A6 involved in 3'-hydroxylation of cotinine in human liver microsomes.

M Nakajima, T Yamamoto, K Nunoya, T Yokoi, K Nagashima, K Inoue, Y Funae, N Shimada, T Kamataki and Y Kuroiwa
Journal of Pharmacology and Experimental Therapeutics May 1, 1996, 277 (2) 1010-1015;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization of CYP2A6 involved in 3'-hydroxylation of cotinine in human liver microsomes.

M Nakajima, T Yamamoto, K Nunoya, T Yokoi, K Nagashima, K Inoue, Y Funae, N Shimada, T Kamataki and Y Kuroiwa
Journal of Pharmacology and Experimental Therapeutics May 1, 1996, 277 (2) 1010-1015;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics