Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872.

A Bril, B Gout, M Bonhomme, L Landais, J F Faivre, P Linee, R H Poyser and R R Ruffolo Jr
Journal of Pharmacology and Experimental Therapeutics February 1996, 276 (2) 637-646;
A Bril
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Gout
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Bonhomme
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Landais
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F Faivre
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Linee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R H Poyser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R R Ruffolo Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the search for novel antiarrhythmic agents, compounds with a diversity of electrophysiological actions have been suggested to result in treatments with potentially improved efficacy but with reduced proarrhythmic risk. To test this hypothesis, the antiarrhythmic versus proarrhythmic profile of BRL-32872, a novel agent with combined potassium and calcium channel blocking activity, was assessed in two different in vivo models of ventricular arrhythmia. Furthermore, the effects of potassium and calcium channel antagonists given either alone or in combination were assessed in the same models. Dogs with myocardial infarction received intravenously either vehicle, BRL-32872, the class III antiarrhythmic agent, E-4031, verapamil or a combination of E-4031 with verapamil (n = 8 per group). Ventricular tachyarrhythmias were induced by programmed electrical stimulation (PES). BRL-32872 (0.1, 0.3, 1.0 mg/kg) significantly increased QTc interval (from 387 +/- 10 to 462 +/- 19 msec.sec-1/2 at 1.0 mg/kg, P < .01). Ventricular effective refractory periods were increased in normal and infarcted areas (P < .01). Similar effects were observed with E-4031 (0.1, 0.3, 1.0 mg/kg). Verapamil (0.03, 0.1, 0.3 mg/kg) reduced heart rate, mean arterial pressure and, to a lesser extent, (+)dP/dtmax. Verapamil did not change QTc interval and ventricular effective refractory periods, but increased PR interval (P < .001). PES-induced tachyarrhythmias were not changed by vehicle or increasing doses of verapamil. E-4031 reduced the severity of arrhythmias from sustained ventricular tachycardia (VT) to nonsustained VT (7 dogs at 1.0 mg/kg, P = .013 vs. vehicle). BRL-32872 (0.1 and 0.3 mg/kg) suppressed the induction of sustained VT in six dogs (P = .02 vs. vehicle). In the presence of BRL-32872, 1.0 mg/kg, five dogs became noninducible to PES (P = .013 vs. vehicle). Combination of E-4031 (0.1 mg/kg) with verapamil provided a degree of protection that was similar to that observed with BRL-32872. In a second model, the proarrhythmic potential of BRL-32872 was assessed in anesthetized rabbits sensitized to develop torsades de pointes (TdP). BRL-32872 was compared with the class III antiarrhythmic agents, E-4031, dofetilide, clofilium and RP-58866. The pure class III antiarrhythmic agents induced TdP in 50 to 90% of the rabbits, and prolonged QT interval by 20 to 50%. BRL-32872 (10 micrograms/kg/min) increased QT interval by 35 +/- 5%, but did not promote TdP. In additional experiments, verapamil reduced the incidence of TdP induced by E-4031. These results show that BRL-32872 is a potent antiarrhythmic compound in a model of PES-induced arrhythmias and induces fewer proarrhythmic events than typical class III antiarrhythmic agents. The effects observed with BRL-32872 suggest that a compound with a combination of potassium (class III) and calcium (class IV) channel antagonistic properties might constitute a novel antiarrhythmic agent with reduced proarrhythmic risk.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 276, Issue 2
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872.

A Bril, B Gout, M Bonhomme, L Landais, J F Faivre, P Linee, R H Poyser and R R Ruffolo
Journal of Pharmacology and Experimental Therapeutics February 1, 1996, 276 (2) 637-646;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872.

A Bril, B Gout, M Bonhomme, L Landais, J F Faivre, P Linee, R H Poyser and R R Ruffolo
Journal of Pharmacology and Experimental Therapeutics February 1, 1996, 276 (2) 637-646;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics