Abstract
BMS-180448 has been found to retain the cardioprotective potency of its chemically related analog, cromakalim, although having significantly less peripheral vasodilating activity. The effect of the ATP-sensitive potassium channel opener, BMS-180448, on postischemic recovery of function (segmental shortening) was determined in open chested, anesthetized dogs instrumented with ultrasonic crystals. The plasma concentration of the effective and ineffective doses of BMS-180448 was compared to concentrations used in isolated rat hearts. BMS-180448 was given as a total dose of 4.2, 1.4 or 0.5 mg/kg over 30 min, starting 15 min before ischemia. Ischemia was initiated by a complete occlusion of the left anterior descending coronary artery for 15 min. Reperfusion was maintained for 3 hr and segmental shortening was measured. During ischemia, systolic bulging was observed in the ischemic region in drug- and vehicle-treated groups. Upon reperfusion, some contractile functional recovery was observed in vehicle-treated controls within minutes, but quickly decreased so that slight bulging was observed up to 3 hr into reperfusion. High dose BMS-180448 significantly improved the recovery of contractile function such that, by 3 hr after reperfusion, segmental shortening had recovered to 60% of base line. The 1.4-mg/kg dose also significantly improved reperfusion function, but 0.5 mg/kg of BMS-180448 was without effect. None of the doses of BMS-180448 significantly affected peripheral hemodynamic status or collateral blood flow. The plasma concentration of the 1.4-mg/kg dose was approximately 3 microM during ischemia. In isolated rat hearts, BMS-180448 significantly increased postischemic function at 3 microM and higher concentrations, which agrees with the dog data. BMS-180448 was protective in a dose-dependent manner in a canine model of stunned myocardium, and the concentrations necessary for protection are similar to that for rats.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|