Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

ATP depletion by iodoacetate and cyanide in renal distal tubular cells.

L H Lash, J J Tokarz, Z Chen, B M Pedrosi and E B Woods
Journal of Pharmacology and Experimental Therapeutics January 1996, 276 (1) 194-205;
L H Lash
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J J Tokarz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B M Pedrosi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E B Woods
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Suspensions of proximal tubular and distal tubular (DT) cells from rat kidney were treated with iodoacetate and potassium cyanide (IAA+KCN) as a model to assess injury from ATP depletion. Cells were also incubated under N2/CO2 to assess if they respond similarly to ATP depletion due to hypoxia. Based on cytotoxic effects of IAA (lactate dehydrogenase [LDH] release, protein sulfhydryl depletion) and inhibition of lactate formation, 20 microM IAA was chosen with 1 mM KCN to inhibit cellular ATP generation. DT cells exhibited significantly greater LDH release due to both IAA + KCN and hypoxia than PT cells. Mechanisms of cellular injury and the ability of various strategies to protect against (IAA+KCN)-induced injury were then studied in isolated renal DT cells to investigate factors responsible for the enhanced susceptibility of this renal cell population, about which little metabolic and toxicological information is known. IAA+KCN produced marked depletion of ATP, only minimal changes in cellular content of glutathione, but significantly decreased cellular content of glutathione disulfide, suggesting generation of a proreductant environment. Extracellular acidosis (pH 6.2 vs. 7.4) completely prevented the increase in LDH release during 2-hr incubations with IAA+KCN and partially prevented ATP depletion. Similarly, preincubation with glutathione, glycine, ATP, or adenosine significantly protected DT cells from injury. Complete restoration of cellular ATP content was not required for protection, although viability correlated better with cellular content of total adenine nucleotides. These studies are the first to explore cellular energetics and cytotoxicity in renal DT cells and demonstrate that these cells are highly sensitive to injury from ATP depletion due to either IAA+KCN or hypoxia.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 276, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
ATP depletion by iodoacetate and cyanide in renal distal tubular cells.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

ATP depletion by iodoacetate and cyanide in renal distal tubular cells.

L H Lash, J J Tokarz, Z Chen, B M Pedrosi and E B Woods
Journal of Pharmacology and Experimental Therapeutics January 1, 1996, 276 (1) 194-205;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

ATP depletion by iodoacetate and cyanide in renal distal tubular cells.

L H Lash, J J Tokarz, Z Chen, B M Pedrosi and E B Woods
Journal of Pharmacology and Experimental Therapeutics January 1, 1996, 276 (1) 194-205;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics