Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907.

T A Pugsley, M D Davis, H C Akunne, R G MacKenzie, Y H Shih, G Damsma, H Wikstrom, S Z Whetzel, L M Georgic and L W Cooke
Journal of Pharmacology and Experimental Therapeutics December 1995, 275 (3) 1355-1366;
T A Pugsley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M D Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H C Akunne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R G MacKenzie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y H Shih
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Damsma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Wikstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Z Whetzel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Georgic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L W Cooke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The present study determined the biochemical and pharmacological effects of PD 128907 [R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H- [1]benzopyrano[4,3-b]-1,4-oxazin-9-ol], a dopamine (DA) receptor agonist that shows a preference for the human D3 receptor. In transfected Chinese hamster ovary cells (CHO K1), PD 128907 displaced [3H]spiperone in a biphasic fashion which fit best to a two-site model, generating Ki values of 20 and 6964 nM for the high- and low-affinity sites for the D2L receptors and 1.43 and 413 nM for the corresponding sites for the D3 receptors. Addition of sodium and the GTP analog Gpp(NH)p to both the D2L and D3 caused a modest reduction in the affinity of the compound suggestive of an agonist type action. In agonist binding ([3H]N-0437), PD 128907 exhibited an 18-fold selectivity for D3 versus D2L, a selectivity similar to that found with antagonist binding to the high-affinity sites. PD 128907 exhibited only weak affinity for D4.2 receptors (Ki = 169 nM). No significant affinity for a variety of other receptors was observed. PD 128907 stimulated cell division (measured by [3H]thymidine uptake) in CHO p-5 cells transfected with either D2L or D3 receptors exhibiting about a 6.3-fold greater potency in activating D3 as compared to D2L receptors. In vivo the compound was active in reducing DA synthesis both in normal and gamma-butyrolactone (GBL) treated rats; in the GBL model, the decrease was greater in the higher D3-expressing mesolimbic region as compared with striatum which has a lower expression of D3 receptors. PD 128907 decreased DA release (as measured by brain microdialysis) both in rat striatum, nucleus accumbens and medial frontal cortex, as well as in monkey putamen. Behaviorally PD 128907 decreased spontaneous locomotor activity (LMA) in rats at low doses, whereas at higher doses stimulatory effects were observed. PD 128907 at high doses reversed the reserpine-induced decrease in LMA and induced stereotypy in combination with the D1 agonist SKF 38393 indicating postsynaptic DA agonist actions. It is unclear which of the subtypes of DA receptors might be mediating the pharmacological effects of PD 128907. However, the present findings indicating that PD 128907 shows a preference for DA D3 over D2L and D4.2 receptors indicates that its action at low doses may be due to interaction with D3 receptors and at higher doses, with both D2 and D3 receptors.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 275, Issue 3
1 Dec 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907.

T A Pugsley, M D Davis, H C Akunne, R G MacKenzie, Y H Shih, G Damsma, H Wikstrom, S Z Whetzel, L M Georgic and L W Cooke
Journal of Pharmacology and Experimental Therapeutics December 1, 1995, 275 (3) 1355-1366;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907.

T A Pugsley, M D Davis, H C Akunne, R G MacKenzie, Y H Shih, G Damsma, H Wikstrom, S Z Whetzel, L M Georgic and L W Cooke
Journal of Pharmacology and Experimental Therapeutics December 1, 1995, 275 (3) 1355-1366;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics