Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes.

C M Cahill, T D White and J Sawynok
Journal of Pharmacology and Experimental Therapeutics October 1995, 275 (1) 84-93;
C M Cahill
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T D White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Sawynok
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Release of adenosine from the spinal cord contributes to spinal antinociception by morphine. Morphine induces a Ca(++)-dependent release of adenosine from dorsal spinal cord synaptosomes, which is augmented under partially depolarizing conditions. The present study examined the opioid receptor subtypes involved in this release, and determined whether adenosine is an important mediator of antinociception induced by the spinal administration of selective opioid agonists in rats. Nanomolar and micromolar concentrations of the selective mu opioid agonists DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin) and PLO17 ([N-MePhe3,D-Pro4]morphiceptin) induced release of adenosine in a biphasic manner in the presence of a partial depolarization (addition of 6 mM K+ to the Krebs' medium). The delta opioid agonists DPDPE ([D-Pen2,D-Pen5]enkephalin) and DELT ([D-Ala2,Cys4]deltorphin) and the kappa opioid agonist U50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrroli-zemeacetamid e) had little effect on the release of adenosine except at high micromolar concentrations. Release of adenosine by mu (nanomolar) and delta (micromolar) ligands is Ca(++)-dependent, whereas the kappa (micromolar) receptor ligand releases adenosine via a Ca(++)-independent mechanism. Behavioral antinociception using the hot-plate threshold test revealed that intrathecal administration of the mu and delta opioid receptor agonists produced dose-dependent antinociception with an order of potency of DAMGO, PLO17 > morphine, DELT > DPDPE. An ED75 dose of morphine, DAMGO or PLO17 was attenuated dose-dependently by intrathecal pretreatment with the adenosine receptor antagonist caffeine. Caffeine did not block the antinociceptive response to delta agonists, but in fact augmented antinociception when combined with DPDPE and DELT. This augmentation was dose-dependent. This study demonstrates that activation of the mu receptor subtype is responsible for the opioid-induced release of adenosine from the spinal cord, that such release contributes to the spinal antinociception by mu agonists and that only release evoked by low doses of opioids is behaviorally relevant.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 275, Issue 1
1 Oct 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes.

C M Cahill, T D White and J Sawynok
Journal of Pharmacology and Experimental Therapeutics October 1, 1995, 275 (1) 84-93;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes.

C M Cahill, T D White and J Sawynok
Journal of Pharmacology and Experimental Therapeutics October 1, 1995, 275 (1) 84-93;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics