Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

SB 203347, an inhibitor of 14 kDa phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and prolongs survival in murine endotoxin shock.

L A Marshall, R H Hall, J D Winkler, A Badger, B Bolognese, A Roshak, P L Flamberg, C M Sung, M Chabot-Fletcher and J L Adams
Journal of Pharmacology and Experimental Therapeutics September 1995, 274 (3) 1254-1262;
L A Marshall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R H Hall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J D Winkler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Badger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Bolognese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Roshak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P L Flamberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C M Sung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Chabot-Fletcher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Adams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 fatty acyl group [predominantly arachidonic acid (AA)] of membrane phospholipids, the products of which are further metabolized, forming a variety of eicosanoids and/or platelet-activating factor. PLA2 activity is significantly enhanced during inflammation and therefore offers an intriguing target in designing anti-inflammatory drugs. SB 203347 (2-[2-[3,5-bis (trifluoromethyl) sulfonamido]-4- trifluoromethylphenoxy] benzoic acid) potently inhibits rh type II 14 kDa PLA2 (IC50 = 0.5 microM) but exhibits a 40-fold weaker inhibition of 85 kDa PLA2 (IC50 = 20 microM) using [3H]-AA E. coli as substrate. A specific interaction with rh type II 14 kDa PLA2 was confirmed both by observing the pH dependence of its IC50 and by demonstrating linear inhibition in a "scooting" kinetic model using radiolabeled phospholipid reporter substrate in a 1,2-dimyristoyl phosphatidylmethanol vesicle. Before evaluating the effect of SB 203347 on AA metabolism in intact human neutrophil, we showed that it fully inhibits PLA2 activity in acid extracted-intact human neutrophil homogenate (IC50 = 4.7 microM). SB 203347 inhibited A23187-induced intact human neutrophil AA mass release in a concentration-dependent manner (IC50 = 1 microM), which coincided with reductions in the biosynthesis of platelet-activating factor (IC50 = 1.5 microM) and leukotriene B4 (IC50 = 2.3 microM). Finally, SB 203347 prolonged survival in a mouse model of endotoxin shock delivered i.p. Taken together, the data support a role of cellular 14 kDa PLA2 in the formation of AA-derived proinflammatory lipid mediator.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 274, Issue 3
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
SB 203347, an inhibitor of 14 kDa phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and prolongs survival in murine endotoxin shock.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

SB 203347, an inhibitor of 14 kDa phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and prolongs survival in murine endotoxin shock.

L A Marshall, R H Hall, J D Winkler, A Badger, B Bolognese, A Roshak, P L Flamberg, C M Sung, M Chabot-Fletcher and J L Adams
Journal of Pharmacology and Experimental Therapeutics September 1, 1995, 274 (3) 1254-1262;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

SB 203347, an inhibitor of 14 kDa phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and prolongs survival in murine endotoxin shock.

L A Marshall, R H Hall, J D Winkler, A Badger, B Bolognese, A Roshak, P L Flamberg, C M Sung, M Chabot-Fletcher and J L Adams
Journal of Pharmacology and Experimental Therapeutics September 1, 1995, 274 (3) 1254-1262;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics