Abstract
Effects of a K+ channel blocker on glomerular filtration rate and electrolyte excretion in conscious rats were observed. Effects of K+ channel modulation on glomerular filtration rate and electrolyte excretion were studied using the adenosine-triphosphate- (ATP)-sensitive K+ channel blocker 4-morpholinecarboximidine-N-1-adamantyl-N'-cyclohexylhydr ochloride (U-37883A) in conscious rats previously equipped with catheters for clearance studies. In saline-loaded rats, i.v. doses of U-37883A of 1.7, 5.0 and 15 mg/kg increased absolute and fractional Na+ excretion dose-dependently without changing K+ excretion. The glomerular filtration rate remained constant during diuresis. In water-loaded (hypotonic dextrose) rats, free-water clearance studies revealed that the ATP-sensitive K+ channel blocker significantly decreased an index of solute reabsorption (free-water clearance adjusted for chloride clearance) in the diluting segment during peak natriuretic activity. In addition, U-37883A significantly decreased the osmolality of renal papillary interstitial fluid, indicative of an effect in the medullary portion of the diluting segment. Together, these findings suggest that ATP-sensitive K+ channels, possibly those located at the apical boarder, play a pivotal role in Na+ reabsorption in the thick ascending limb of the loop of Henle.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|