Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Characterization of the electrophysiological, biochemical and behavioral actions of epibatidine.

D W Bonhaus, K R Bley, C A Broka, D J Fontana, E Leung, R Lewis, A Shieh and E H Wong
Journal of Pharmacology and Experimental Therapeutics March 1995, 272 (3) 1199-1203;
D W Bonhaus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K R Bley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C A Broka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D J Fontana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Leung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Lewis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Shieh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E H Wong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Epibatidine has been reported to be a potent, nonopioid analgesic. In this study we further characterized its receptor interactions and its analgesic properties. Radioligand binding assays demonstrated that epibatidine has high affinity for nicotinic receptors (Ki = 0.12 nM) but low affinity for opioid and other receptors (Ki > 3.0 microM). In vitro functional assays demonstrated that the compound is a potent agonist at both neuronal and neuromuscular nicotinic receptors. Epibatidine depolarized rat isolated vagus nerve with an EC50 of 33.1 nM and contracted guinea pig ileum with an EC50 of 6.1 nM. Epibatidine contracted frog rectus abdominis muscle with an EC50 of 18.2 nM. In vivo, epibatidine demonstrated short-lived analgesic actions. Epibatidine (10 and 30 micrograms/kg), at 5 but not 20 min after dosing, increased the threshold for vocalization evoked by foot shock. Epibatidine, at 5 and 20 but not 60 min after dosing, also increased the latency to a nociceptive response in a hot-plate assay. Both (+)- and (-)-enantiomers of epibatidine were active in these assays. The action of epibatidine in the hot-plate test was reversed by the nicotinic receptor antagonist mecamylamine but not by the opioid receptor antagonist naloxone. In contrast to morphine, epibatidine failed to increase locomotor activity. These findings demonstrate that epibatidine is a potent agonist at both neuronal and neuromuscular nicotinic receptors. These findings also demonstrate a short-lived, naloxone-insensitive, analgesic action for both the (+)- and (-)-enantiomers of epibatidine.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 272, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of the electrophysiological, biochemical and behavioral actions of epibatidine.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization of the electrophysiological, biochemical and behavioral actions of epibatidine.

D W Bonhaus, K R Bley, C A Broka, D J Fontana, E Leung, R Lewis, A Shieh and E H Wong
Journal of Pharmacology and Experimental Therapeutics March 1, 1995, 272 (3) 1199-1203;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization of the electrophysiological, biochemical and behavioral actions of epibatidine.

D W Bonhaus, K R Bley, C A Broka, D J Fontana, E Leung, R Lewis, A Shieh and E H Wong
Journal of Pharmacology and Experimental Therapeutics March 1, 1995, 272 (3) 1199-1203;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics