Abstract
Recent evidence from our laboratory has demonstrated that blockade of somatodendritic 5-hydroxytryptamine (5-HT)1A autoreceptors by systemic administration of spiperone increases the firing rate of central serotonergic neurons in awake cats. The present study examines the effects of three other putative 5-HT1A antagonists (BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4,5]decane-7,9-dione), NAN 190 [1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine) and (-)-propranolol) on the single-unit activity of serotonergic neurons recorded in the dorsal raphe nucleus of free-moving cats. Systemic administration of the phenylpiperazine derivatives BMY 7378 (5-100 micrograms/kg i.v.) and NAN 190 (5-250 micrograms/kg i.v.) produced a rapid, dose-dependent inhibition of neuronal activity with BMY 7378 being approximately twice as potent as NAN 190 (ED50 = 15.3 micrograms/kg vs. 34.2 micrograms/kg). The suppression of neuronal activity produced by both compounds was greatly attenuated by spiperone (1 mg/kg i.v.). Systemic administration of (-)-propranolol (2 and 4 mg/kg i.v.) produced a modest suppression of serotonergic neuronal activity which did not appear to be dose-related. The ability of BMY 7378, NAN 190 and (-)-propranolol to block the suppression of neuronal activity produced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a selective 5-HT1A agonist, was also examined. Pretreatment with these compounds had no significant effect on the inhibitory response of serotonergic neurons to 8-OH-DPAT challenge. These results indicate that BMY 7378 and NAN 190 act as agonists rather than antagonists at the somatodendritic 5-HT1A autoreceptor.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|