Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE(2)-C neuroblastoma cells.

K M Standifer, J Cheng, A I Brooks, C P Honrado, W Su, L M Visconti, J L Biedler and G W Pasternak
Journal of Pharmacology and Experimental Therapeutics September 1994, 270 (3) 1246-1255;
K M Standifer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A I Brooks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C P Honrado
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Su
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Visconti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Biedler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G W Pasternak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Total opioid binding in the human neuroblastoma cell line BE(2)-C has a density similar to that found in brain, with a Bmax value of 383 +/- 60 fmol/mg protein and a KD of 0.4 +/- 0.07 nM for the nonselective opioid antagonist 3H-diprenorphine. Selective assays reveal a binding distribution of mu (38%), delta (16%) and kappa 3 (43%) opioid receptors. There is no observable kappa 1 or kappa 2 binding. The sum of the Bmax values in the selective binding assays (370 +/- 39 fmol/mg protein) approximates closely that observed with 3H-diprenorphine, suggesting that mu, delta and kappa 3 sites account for most of the binding. The binding selectivities of various opiates and opioid peptides in the BE(2)-C cells are similar to those in rat brain. Delta and mu binding are defined easily by traditional selective ligands. The binding profiles also distinguish clearly mu from kappa 3 binding. The selective mu ligand DAMGO competes with mu binding over 35-fold more potently than kappa 3 binding, whereas morphine shows a 10-fold selectivity. Functionally, selective mu, delta and kappa 3 agonists inhibit forskolin-stimulated cAMP accumulation through distinct receptor mechanisms that are pertussis toxin-sensitive. In addition to demonstrating that BE(2)-C cells provide a useful model system for studying mu, kappa 3 and delta receptors, these studies confirm that kappa 3 receptors represent a pharmacologically distinct receptor class in this cell line.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 270, Issue 3
1 Sep 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE(2)-C neuroblastoma cells.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE(2)-C neuroblastoma cells.

K M Standifer, J Cheng, A I Brooks, C P Honrado, W Su, L M Visconti, J L Biedler and G W Pasternak
Journal of Pharmacology and Experimental Therapeutics September 1, 1994, 270 (3) 1246-1255;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE(2)-C neuroblastoma cells.

K M Standifer, J Cheng, A I Brooks, C P Honrado, W Su, L M Visconti, J L Biedler and G W Pasternak
Journal of Pharmacology and Experimental Therapeutics September 1, 1994, 270 (3) 1246-1255;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics