Abstract
The possibility that serotonin (5-HT) modulates dopamine (DA) synthesis by acting at 5-HT2 receptor sites during methamphetamine (METH) treatment was investigated. The neostriatal accumulation of 3,4-dihydroxyphenylalanine was not altered by ritanserin (1 mg/kg i.p.), a 5-HT2/1c receptor antagonist, or by METH (15 or 25 mg/kg s.c.), which indicates that METH-induced DA and 5-HT release did not invoke increased DA synthesis. Interestingly, the combined treatment of METH with ritanserin reduced 3,4-dihydroxyphenylalanine formation. We also examined the possibility that 5-HT2 receptors participate in the mechanism by which METH alters central tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities as well as the concentration of neurotensin-like and substance P-like immunoreactivity. Five administrations of METH given at 6-hr intervals reduced neostriatal TH and TPH activity to 27 and 13% of control, respectively, 18 to 20 hr after the last drug administration; ritanserin failed to alter these decreases significantly. Ritanserin also failed to alter the METH-induced increase in neostriatal neurotensin-like immunoreactivity or in nigral neurotensin-like immunoreactivity and substance P-like immunoreactivity. Finally, the administration of ICS 205-930, a 5-HT3/4 receptor antagonist, also failed to prevent the METH-induced decrease in TH and TPH activities at doses below 200 micrograms/kg, whereas a dose of 500 micrograms/kg potentiated the effect of METH. These results suggest that 5-HT2 does not modulate DA synthesis nor does it mediate the changes in central TH and TPH activity, or neurotensin-like immunoreactivity and substance P-like immunoreactivity content induced by METH. Because 3,4-methylenedioxymethamphetamine is reported to stimulate DA synthesis by a 5-HT2 receptor-dependent mechanism, these observations suggest that METH and 3,4-methylenedioxymethamphetamine regulate the central dopaminergic system in a different manner.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|