Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation.

R Masereeuw, E J van den Bergh, R J Bindels and F G Russel
Journal of Pharmacology and Experimental Therapeutics June 1994, 269 (3) 1261-1267;
R Masereeuw
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E J van den Bergh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Bindels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F G Russel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The uptake and accumulation of the organic anion fluorescein-sodium (Flu-Na) was investigated in freshly isolated proximal tubular cells (PTC) of the rat kidney. Furthermore, the influence of other organic anions on Flu-Na uptake was studied in order to characterize Flu-Na transport in PTC. Flu-Na showed concentration-dependent, saturable and probenecid-sensitive transport. Comparing the transport parameters with para-aminohippurate (PAH), Flu-Na exhibited a higher affinity, but lower capacity to the organic anion transport system. The apparent Km for Flu-Na transport was 59 +/- 15 microM with a Vmax of 186 +/- 26 pmol/mg of protein/min, and for PAH 207 +/- 11 microM and 740 +/- 46 pmol/mg of protein/min, respectively. Dose-dependent inhibition of Flu-Na uptake with PAH resulted in an apparent inhibition constant Ki of 249 microM. This is in good agreement with the apparent Km of PAH, indicating that Flu-Na uptake is regulated by the PAH transport system. It is suggested that cellular uptake of both organic anions is mediated by a carrier at the basolateral membrane. However, after incubating cells with different concentrations of phenol red the percentage of maximum inhibition was 84%, which was significantly different from the 32% with PAH, suggesting that another transport system may be involved in Flu-Na uptake. Experiments with confocal laser scanning microscopy showed cellular uptake of Flu-Na and accumulation in subcellular structures. After superfusion of PTC with rhodamine 123 these structures were identified as mitochondria.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 269, Issue 3
1 Jun 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation.

R Masereeuw, E J van den Bergh, R J Bindels and F G Russel
Journal of Pharmacology and Experimental Therapeutics June 1, 1994, 269 (3) 1261-1267;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation.

R Masereeuw, E J van den Bergh, R J Bindels and F G Russel
Journal of Pharmacology and Experimental Therapeutics June 1, 1994, 269 (3) 1261-1267;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics