Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

New mechanism of action of the cancer chemotherapeutic agent 5-fluorouracil in human cells.

J C Wurzer, R J Tallarida and M A Sirover
Journal of Pharmacology and Experimental Therapeutics April 1994, 269 (1) 39-43;
J C Wurzer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Tallarida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Sirover
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

5-Fluorouracil (5-FlUra), a cancer chemotherapeutic agent used in the treatment of colon, breast, ovarian and prostate cancer, is incorporated into DNA as a result of its utilization as 5-FldUTP during DNA synthesis. This promutagenic DNA lesion is excised by the base excision repair enzyme uracil DNA glycosylase (UDG). In this report we describe for the first time a mechanism by which 5-FlUra as the free base specifically binds in vivo to the UDG in noncycling human cells, thereby inhibiting its activity. By using 5-FlUra concentrations which did not elicit demonstrable cell toxicity, a dose-dependent decrease in UDG activity was detected which approached 30% of that observed in control cells. In contrast, exposure of cells to equivalent concentrations of uracil, 5-fluorodeoxyuridine or 5-bromouracil had no effect on UDG activity. Subsequent studies demonstrated a reversible binding of 5-FlUra to the glycosylase. Kinetic analysis using nonlinear regression analysis demonstrated a competitive mode of inhibition and indicated a tight binding of 5-FlUra to UDG in vivo, although the 5-FlUra-UDG complex was easily dissociated in vitro. These findings describe a potentially new and novel mechanism of action of 5-FlUra in a nonproliferating human cell population. The potential relevance of these findings to the utility of 5-FlUra as a cancer chemotherapeutic agent is considered.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 269, Issue 1
1 Apr 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
New mechanism of action of the cancer chemotherapeutic agent 5-fluorouracil in human cells.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

New mechanism of action of the cancer chemotherapeutic agent 5-fluorouracil in human cells.

J C Wurzer, R J Tallarida and M A Sirover
Journal of Pharmacology and Experimental Therapeutics April 1, 1994, 269 (1) 39-43;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

New mechanism of action of the cancer chemotherapeutic agent 5-fluorouracil in human cells.

J C Wurzer, R J Tallarida and M A Sirover
Journal of Pharmacology and Experimental Therapeutics April 1, 1994, 269 (1) 39-43;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics