Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Further studies of the role of hyperthermia in methamphetamine neurotoxicity.

J F Bowyer, D L Davies, L Schmued, H W Broening, G D Newport, W Slikker Jr and R R Holson
Journal of Pharmacology and Experimental Therapeutics March 1994, 268 (3) 1571-1580;
J F Bowyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Davies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Schmued
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H W Broening
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G D Newport
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Slikker Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R R Holson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The depletion of striatal dopamine (DA) that can occur after methamphetamine (METH) administration has been linked to METH-induced hyperthermia. The relationship between METH-induced hyperthermia, neurotoxicity (striatal DA depletions) and compounds that protect against METH neurotoxicity was further investigated in this study. Typically, rats exposed to METH die when their body temperatures exceed 41.3 degrees C but such hyperthermic rats can be saved by hypothermic intervention. Subsequently, rats saved by hypothermic intervention have greater depletion of striatal DA at an earlier time of onset (18 hr or less post-METH) than do METH-exposed rats that do not attain such high temperatures. Striatal damage was present 3 days post-METH in these hyperthermic rats, as assessed by silver degeneration of terminals and increases in the astrocytes that express glial fibrillary acidic protein immunoreactivity. By contrast, alterations in the number of [3H]dizoclipine (MK-801) binding sites in cortical or striatal membranes at 1, 3 or 14 days post-METH were not detected. The experiments showed that mean and maximal body temperature correlated well with striatal DA concentrations 3 days post-METH (r = -0.77, n = 58), which suggests a role for hyperthermia in METH neurotoxicity. However, hyperthermia (alone or with haloperidol present) induced by high ambient temperatures did not deplete striatal DA in the absence of METH. Haloperidol, diazepam and MK-801 all reduced METH-induced striatal DA depletion to a degree predicted by their inhibition of hyperthermia and increased ambient temperature abolished their neuroprotection. Although an interleukin-1 receptor antagonist reduced maximal body temperature enough to lower the lethality rate, it did not reduce the temperature sufficiently to block METH neurotoxicity. It was concluded that short- and long-term decreases in striatal DA levels depend on the degree of hyperthermia produced during METH exposure but cannot be produced by hyperthermia alone. In addition, several agents that block DA depletions do so by inhibiting METH-induced hyperthermia. Finally, the results suggested a role for interleukin-1 in the extreme hyperthermia and lethality produced by METH.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 268, Issue 3
1 Mar 1994
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Further studies of the role of hyperthermia in methamphetamine neurotoxicity.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Further studies of the role of hyperthermia in methamphetamine neurotoxicity.

J F Bowyer, D L Davies, L Schmued, H W Broening, G D Newport, W Slikker and R R Holson
Journal of Pharmacology and Experimental Therapeutics March 1, 1994, 268 (3) 1571-1580;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Further studies of the role of hyperthermia in methamphetamine neurotoxicity.

J F Bowyer, D L Davies, L Schmued, H W Broening, G D Newport, W Slikker and R R Holson
Journal of Pharmacology and Experimental Therapeutics March 1, 1994, 268 (3) 1571-1580;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics