Abstract
Acetylcholine (ACh)-induced contraction of esophageal circular smooth muscle cells was inhibited by the M2 muscarinic antagonist methoctramine. In lower esophageal sphincter (LES) cells contraction was inhibited by the M3 antagonist p-fluoro-hexa-hydro-sila-difenidol (pF-HSD). Pertussis toxin (PTX) reduced ACh-induced contraction of esophageal but not of LES cells, which suggested that different receptor-linked G proteins are involved. Antibodies against G13 antagonized contraction of esophageal cells and G9-G11 antibodies antagonized contraction of LES cells. The phosphatidylinositol-specific phospholipase C (PLC) inhibitors, U-73122 and neomycin, reduced ACh-induced contraction of LES but not of esophageal cells. Conversely, propranolol and p-chloromercuribenzoic acid (pCMB), which inhibit a phosphatidylcholine-specific phospholipase D (PLD)-dependent pathway, reduced contraction of esophageal but not of LES muscle cells. At 1 and 5 sec after the administration of ACh (10(-5) M), inositol 1,4,5-trisphosphate (IP3) increased only in LES muscle, which suggested that contraction results from PLC-induced IP3 production in the LES but not in the esophagus. The IP3 receptor antagonist heparin, and depletion of intracellular Ca++ stores by thapsigargin or A23187, inhibited ACh-induced contraction of LES but not of esophageal muscle. It was concluded that ACh-induced esophageal contraction depends preferentially on M2 receptors, a PTX-sensitive G13 protein, phosphatidylcholine-specific PLD and production of diacylglycerol (DAG) and is independent of IP3 formation and the release of intracellular Ca++. Conversely, LES contraction is mediated through M3 receptors, a PTX-insensitive G9-G11 protein, activation of PLC, IP3 formation and the release of intracellular Ca++.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|