Abstract
N-methyl-D-aspartate receptor antagonists are potent neuroprotectants in experimental focal cerebral ischemia, but behavioral and neuropathologic changes seen with these drugs in rodent models may limit the clinical utility of these compounds. Glycine's modulation of N-methyl-D-aspartate channel function offers another pharmacologic approach to excitotoxicity in ischemia. The potent glycine antagonist 7 Chlorothiokynurenic acid (7-Cl-Thio-Kyna) was studied in a permanent middle cerebral artery occlusion stroke model in the rat. The compound was effective, in a dose-dependent manner, in attenuating infarct size when administered before or after permanent middle cerebral artery occlusion. Its activity was mainly due to glycine antagonism inasmuch as 5 Chlorothiokynurenic acid, a compound having other pharmacological activities in common with 7-CI-Thio-Kyna (for instance the radical scavenger action), was inactive in this model. 7-Cl-Thio-Kyna did not produce cytological changes similar to MK 801.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|