Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

On the relationship between D2 receptor density and neuroleptic-induced catalepsy among eight inbred strains of mice.

S J Kanes, B A Hitzemann and R J Hitzemann
Journal of Pharmacology and Experimental Therapeutics October 1993, 267 (1) 538-547;
S J Kanes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B A Hitzemann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Hitzemann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The present study assesses the relationships among ED50 to neuroleptic-induced catalepsy and regional brain D1 and D2 dopamine receptor binding for eight inbred strains of mice (A, AKR, BALB/c, C3H, C57BL/6, CBA, DBA/2 and LP). The ED50 for haloperidol among these strains varies 30-fold from the most sensitive (BALB/c 0.31 mg/kg) to least sensitive (LP 9.5 mg/kg). As measured by quantitative receptor autoradiography, the haloperidol ED50 shows a significant positive correlation with [3H]spiroperidol binding to somatodendritic autoreceptors in the midbrain dopamine cell groups (A8, A9 and A10), but not with binding in the striatum. Although there are strain differences in [3H]SCH23390 binding in all regions studied, D1 receptor density was not correlated with haloperidol ED50. Within the striatum of these eight strains, there is no correlation between [3H]spiroperidol binding and [3H]SCH23390 binding. Overall, these data indicate that sensitivity to neuroleptic induced catalepsy is a genetically determined trait and that midbrain D2 receptor density may contribute significantly to the variance in this response.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 267, Issue 1
1 Oct 1993
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
On the relationship between D2 receptor density and neuroleptic-induced catalepsy among eight inbred strains of mice.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

On the relationship between D2 receptor density and neuroleptic-induced catalepsy among eight inbred strains of mice.

S J Kanes, B A Hitzemann and R J Hitzemann
Journal of Pharmacology and Experimental Therapeutics October 1, 1993, 267 (1) 538-547;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

On the relationship between D2 receptor density and neuroleptic-induced catalepsy among eight inbred strains of mice.

S J Kanes, B A Hitzemann and R J Hitzemann
Journal of Pharmacology and Experimental Therapeutics October 1, 1993, 267 (1) 538-547;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics