Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

New methoxy-chroman derivatives, 4[N-(5-methoxy-chroman-3-yl)N- propylamino]butyl-8-azaspiro-(4,5)-decane-7,9-dione [(+/-)-S 20244] and its enantiomers, (+)-S 20499 and (-)-S 20500, with potent agonist properties at central 5-hydroxytryptamine1A receptors.

E J Kidd, S Haj-Dahmane, T Jolas, L Lanfumey, C M Fattaccini, B Guardiola-Lemaitre, H Gozlan and M Hamon
Journal of Pharmacology and Experimental Therapeutics February 1993, 264 (2) 863-872;
E J Kidd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Haj-Dahmane
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Jolas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Lanfumey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C M Fattaccini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Guardiola-Lemaitre
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Gozlan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Hamon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The potential interaction of the new methoxy-chroman derivatives: (+/-)-S 20244 (4-[N-(5-methoxy-chroman-3-yl)N-propylamino]butyl-8-azaspiro- (4,5)-decane-7,9-dione) and its enantiomers (+)-S 20499 and (-)-S 20500 with central 5-hydroxytryptamine1A (5-HT1A) receptors was assessed using biochemical and electrophysiological tests in the rat. In vitro binding assays revealed that these drugs bound with high affinity to 5-HT1A sites in hippocampal membranes (Ki: 0.19 nM for (+)-S 20499, 0.95 nM for (-)-S 20500 and 0.35 nM for the racemate (+/-) S 20244). As seen with the prototypical 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin, (+/-)-S 20244, (+)-S 20499 and (-)-S 20500 inhibited forskolin-activated adenylate cyclase in hippocampal homogenates with potencies corresponding to their respective affinities for 5-HT1A sites. The maximal inhibitory effect of the chroman derivatives was not additive with that of 8-hydroxy-2-(di-n- propylamino)tetralin and could be competitively reduced by 5-HT1A antagonists such as (-)-propranolol and (+/-)-tertatolol. Electrophysiological recordings within the dorsal raphe nucleus both in vitro (in brain-stem slices) and in vivo (in chloral hydrate anesthetized rats) showed that (+)-S 20499, (+/-)-S 20244 and (-)-S 20500 induced, in that order of (decreasing) potency, a dose-dependent reduction in the spontaneous firing of serotoninergic neurons. In vitro, as well as in vivo, the inhibitory influence of the chroman derivatives on the discharge frequency of serotoninergic neurons could be competitively antagonized by (+/-)-tertatolol. Finally, oral administration of increasing doses of the most potent enantiomer, (+)-S 20499, induced a marked reduction in the rate of 5-HT turnover, without affecting that of dopamine, in various brain areas. All these biochemical and electrophysiological data indicate that (+)-S 20499 is a highly potent agonist at both presynaptic (i.e., somatodendritic) and postsynaptic 5-HT1A receptors in the rat brain.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 264, Issue 2
1 Feb 1993
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
New methoxy-chroman derivatives, 4[N-(5-methoxy-chroman-3-yl)N- propylamino]butyl-8-azaspiro-(4,5)-decane-7,9-dione [(+/-)-S 20244] and its enantiomers, (+)-S 20499 and (-)-S 20500, with potent agonist properties at central 5-hydroxytryptamine1A receptor…
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

New methoxy-chroman derivatives, 4[N-(5-methoxy-chroman-3-yl)N- propylamino]butyl-8-azaspiro-(4,5)-decane-7,9-dione [(+/-)-S 20244] and its enantiomers, (+)-S 20499 and (-)-S 20500, with potent agonist properties at central 5-hydroxytryptamine1A receptors.

E J Kidd, S Haj-Dahmane, T Jolas, L Lanfumey, C M Fattaccini, B Guardiola-Lemaitre, H Gozlan and M Hamon
Journal of Pharmacology and Experimental Therapeutics February 1, 1993, 264 (2) 863-872;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

New methoxy-chroman derivatives, 4[N-(5-methoxy-chroman-3-yl)N- propylamino]butyl-8-azaspiro-(4,5)-decane-7,9-dione [(+/-)-S 20244] and its enantiomers, (+)-S 20499 and (-)-S 20500, with potent agonist properties at central 5-hydroxytryptamine1A receptors.

E J Kidd, S Haj-Dahmane, T Jolas, L Lanfumey, C M Fattaccini, B Guardiola-Lemaitre, H Gozlan and M Hamon
Journal of Pharmacology and Experimental Therapeutics February 1, 1993, 264 (2) 863-872;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics