Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.

K Rasmussen, J F Czachura, M E Stockton and J J Howbert
Journal of Pharmacology and Experimental Therapeutics January 1993, 264 (1) 480-488;
K Rasmussen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F Czachura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M E Stockton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J J Howbert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The diphenylpyrazolidinone cholecystokinin (CCK)-B antagonist LY262691 has recently been demonstrated to decrease the number of spontaneously active dopamine (DA) cells in the ventral tegmental area (A10) and substantia nigra (A9) of the anesthetized rat. In the present study, three structural analogs of LY262691 with high selectivity for CCK-B receptors, LY262684, LY191009 and LY242040, also decreased the number of spontaneously active A10 DA cells. Neither an inactive analog (LY206890) nor a CCK-A-selective analog (LY219057) affected the number of spontaneously active A10 DA cells. L-365,260, a benzodiazepine CCK-B antagonist, also decreased the number of spontaneously active A10 DA cells. In addition, the more active optical isomer of LY262691 (LY288513) caused twice as large a decrease in the number of spontaneously active A10 DA cells as the less active optical isomer (LY288512). The diphenylpyrazolidinone CCK-B antagonists, but neither the inactive nor the CCK-A selective analog, also decreased the number of spontaneously active A9 DA cells; however, none of these compounds produced catalepsy in awake animals. Single-unit recordings indicated that LY262691 administration inhibited the activity of individual A9 and A10 DA neurons. These results indicate that the firing of A9 and A10 DA neurons is suppressed specifically by antagonism of CCK-B, but not CCK-A receptors. CCK-B antagonists may therefore represent a novel class of antipsychotic drugs. Furthermore, because CCK-B antagonists have no cataleptogenic effects, they may also have a reduced propensity for producing extrapyramidal side effects. In addition, these actions on midbrain DA neurons may contribute to the known anxiolytic activity of CCK-B antagonists.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 264, Issue 1
1 Jan 1993
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.

K Rasmussen, J F Czachura, M E Stockton and J J Howbert
Journal of Pharmacology and Experimental Therapeutics January 1, 1993, 264 (1) 480-488;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.

K Rasmussen, J F Czachura, M E Stockton and J J Howbert
Journal of Pharmacology and Experimental Therapeutics January 1, 1993, 264 (1) 480-488;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics