Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

In vitro and in vivo biotransformation and covalent binding of benzo(a)pyrene in Gunn and RHA rats with a genetic deficiency in bilirubin uridine diphosphate-glucuronosyltransferase.

Z Hu and P G Wells
Journal of Pharmacology and Experimental Therapeutics October 1992, 263 (1) 334-342;
Z Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P G Wells
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Like many polycyclic aromatic hydrocarbons in the environment, >30% of benzo(a)pyrene (BP), an environmental carcinogen and teratogen, is eliminated by glucuronidation, which competes with a toxifying pathway involving cytochrome P-450-catalyzed bioactivation of BP to a carcinogenic reactive intermediate, BP-7,8-diol-9,10-oxide. Genetic deficiencies in bilirubin UDP-glucuronosyltransferase (GT) occur in >5% of the population (Gilbert's disease, Crigler-Najjar syndromes), and this could predispose such people to the toxic effects of polycyclic aromatic hydrocarbons and other environmental chemicals that are eliminated substantially by glucuronidation. This hypothesis was evaluated in vitro and in vivo in homozygous Gunn and RHA rats, both of which are genetically deficient in GT. [7,10-14C]BP was incubated with rat liver microsomes, NADPH and uridine diphosphate-glucuronic acid. BP and its metabolites, including its glucuronide conjugates, were measured by high performance liquid chromatography with a radioisotope detector, and the covalent binding of BP to microsomal protein was measured by liquid scintillation counting. Compared with Wistar (Gunn) controls and RHA homozygous normal controls, microsomes from homozygous GT-deficient Gunn and RHA rats demonstrated 18.5 to 48.5% lower production of the glucuronide conjugate, with 2 to 3-fold greater covalent binding of BP (P < .05). Elevated BP covalent binding correlated with reduced glucuronidation in both Gunn (r = -0.705, P = .003) and RHA rats (r = 0.824, P = .001). In vivo, the covalent binding of [G-3H]BP to hepatic DNA and microsomal protein was enhanced 2-fold and 1.5-fold, respectively, in homozygous RHA GT-deficient rats, compared with RHA GT-normal controls (P < .05)(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 263, Issue 1
1 Oct 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vitro and in vivo biotransformation and covalent binding of benzo(a)pyrene in Gunn and RHA rats with a genetic deficiency in bilirubin uridine diphosphate-glucuronosyltransferase.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

In vitro and in vivo biotransformation and covalent binding of benzo(a)pyrene in Gunn and RHA rats with a genetic deficiency in bilirubin uridine diphosphate-glucuronosyltransferase.

Z Hu and P G Wells
Journal of Pharmacology and Experimental Therapeutics October 1, 1992, 263 (1) 334-342;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

In vitro and in vivo biotransformation and covalent binding of benzo(a)pyrene in Gunn and RHA rats with a genetic deficiency in bilirubin uridine diphosphate-glucuronosyltransferase.

Z Hu and P G Wells
Journal of Pharmacology and Experimental Therapeutics October 1, 1992, 263 (1) 334-342;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics