Abstract
Separate genes for alpha-1A and alpha-1B adrenoceptors have now been identified. Whereas alpha-1 adrenoceptors are known to mediate rat renal vasoconstriction, the relative importance of these alpha-1 adrenoceptor subtypes was unknown. We cannulated the right suprarenal artery of anesthetized male Sprague-Dawley rats to permit administration of the alpha-1A and alpha-1B alkylating antagonists, SZL-49 (SZL) and chloroethylclonidine (CEC), respectively, directly into the right kidney. Treated kidneys were homogenized to identify the doses of SZL and CEC that caused the maximum reductions in Bmax for [3H]prazosin, the relatively nonselective alpha-1 adrenoceptor antagonist. In other rats, a Doppler flow probe was placed around the right renal artery, and dose-peak response curves for boluses of the alpha-1 adrenoceptor agonist phenylephrine (PHE) were generated before and after supramaximal dosages of SZL or CEC. Renal vasoconstriction to PHE was nearly obliterated by SZL. In contrast, CEC caused only a modest rightward shift in the PHE DRC. SZL also abolished the renal vascular response to two other alpha-1 adrenoceptor agonists, cirazoline and methoxamine. Our data support the conclusion that the alpha-1 adrenoceptors at the level of the rat renal resistance vessels are predominantly alpha-1A adrenoceptors.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|