Abstract
Pimobendan (UD-CG 115 BS), an inotropic agent and inhibitor of type III phosphodiesterase activity, is demethylated in vivo to form UD-CG 212 Cl, which is a more potent type III phosphodiesterase inhibitor. This study examined cyclic AMP (cAMP)-mediated actions of UD-CG 212 Cl. In guinea pig papillary muscles, UD-CG 212 Cl increased cAMP and stimulated Ca(++)-dependent slow action potentials (APs) in a dose-dependent manner. When compared to previous studies using pimobendan, UD-CG 212 Cl was approximately 100-fold more potent. UD-CG 212 Cl had no additional effects on slow APs in the presence of a maximal dose of isoproterenol (1 microM). Propranolol had little effect on UD-CG 212 Cl-induced slow APs. These results, along with previous studies, indicate that slow AP induction by UD-CG 212 Cl was cAMP-dependent, and the increase in cAMP levels was most likely due to phosphodiesterase inhibition and not beta receptor stimulation. Experiments with tetraethylammonium.Cl suggested that UD-CG 212 Cl probably did not induce slow APs by blocking K+ channels. In voltage-clamped ventricular myocytes UD-CG 212 Cl (100 microM) could stimulate Ca++ current (+21 +/- 5%) when basal cAMP levels were enhanced with a submaximal dose of isoproterenol (10(-9)-10(-8) M). Isoproterenol was not required to observe the stimulating effect of UD-CG 212 Cl on Ca++ current in intact, nondialyzed cells prepared using the nystatin-perforated patch method. Studies with the stereoisomers of UD-CG 212 Cl showed that the D-isomer was more potent than the L-isomer.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|