Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration.

S J Weber, D L Greene, S D Sharma, H I Yamamura, T H Kramer, T F Burks, V J Hruby, L B Hersh and T P Davis
Journal of Pharmacology and Experimental Therapeutics December 1991, 259 (3) 1109-1117;
S J Weber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Greene
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S D Sharma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H I Yamamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T H Kramer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T F Burks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V J Hruby
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L B Hersh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T P Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To improve pharmacological characteristics of the delta-selective, cyclic peptide [D-Pen2, D-Pen5]enkephalin (DPDPE), modification by halogenation at the Phe4 residue was undertaken. The present study was to determine the extent [3H]DPDPE, [3H][p-Cl-Phe4]DPDPE and [p-125IPhe4]DPDPE crosses the blood-brain barrier, elicits analgesia and to characterize selective organ distribution and stability after i.v. administration. A significantly greater percentage of total [3H][p-Cl-Phe4]DPDPE reached the brain after 10, 20 and 40 min as compared to [3H]DPDPE and both peptides were significantly displaced by pretreatment with naloxone or naltrindole. The amount of [3H]DPDPE detected in the brain was greater than that of [p-125IPhe4]DPDPE. Distribution results revealed large amounts of the administered peptides were sequestered rapidly in the gall bladder and secreted into the small intestine. Hot-plate antinociception tests 5 min after i.v. administration (30 and 60 mg/kg) revealed [p-Cl-Phe4]DPDPE to elicit a much greater analgesic effect as compared to DPDPE or [p-125IPhe4]DPDPE. These results provide evidence that [p-Cl-Phe4]DPDPE has a greater apparent distribution to the brain and has a greater effect on the antinociception threshold as tested on the hot-plate than DPDPE or [p-125IPhe4]DPDPE. Stability of unlabeled and tritiated DPDPE and [p-Cl-Phe4]DPDPE was determined both in vitro and in vivo; both unlabeled and tritiated DPDPE and [p-Cl-Phe4]DPDPE remain intact.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 259, Issue 3
1 Dec 1991
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration.

S J Weber, D L Greene, S D Sharma, H I Yamamura, T H Kramer, T F Burks, V J Hruby, L B Hersh and T P Davis
Journal of Pharmacology and Experimental Therapeutics December 1, 1991, 259 (3) 1109-1117;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration.

S J Weber, D L Greene, S D Sharma, H I Yamamura, T H Kramer, T F Burks, V J Hruby, L B Hersh and T P Davis
Journal of Pharmacology and Experimental Therapeutics December 1, 1991, 259 (3) 1109-1117;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics