Abstract
This report describes experiments designed to determine whether (-)-deprenyl potentiates dopaminergic transmission and whether its mechanism involves the inhibition of dopamine catabolism. Intraperitoneal administration of (-)-deprenyl (0.5-8 mg kg-1) produced a dose-dependent inhibition of striatal monoamine oxidase type B activity whereas monamine oxidase type A activity in the striatum was inhibited only by 8 mg kg-1 of (-)-deprenyl. Intraperitoneal administration of (-)-deprenyl (0.5-4 mg kg-1) did not alter the striatal concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) or homovanillic acid. DOPAC concentrations were decreased by 8 mg kg-1 of (-)-deprenyl. In contrast, administration of clorgyline (2 mg kg-1), a monoamine oxidase type A inhibitor, increased the striatal concentrations of DA and decreased the striatal concentrations of DOPAC and homovanillic acid. The striatal concentrations of 2-phenylethylamine (PE), a putative modulator of striatal DA transmission, were increased by (-)-deprenyl (1-8 mg kg-1) but were unaffected by clorgyline (2 mg kg-1). In electrophysiological studies, single caudate neuron responses to iontophoretically applied (-)-apomorphine and (+/-)-2-(N-phenethyl-N-propyl) amino-5-hydroxytetralin were potentiated by intracarotid injections of PE (30 micrograms kg-1) and i.p. injections of (-)-deprenyl (2 mg kg-1). Both PE and (-)-deprenyl reduced the IT50 of responses to apomorphine and (+/-)-2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|