Abstract
When treated with the cytosolic Ca++ indicator Quin 2-acetoxymethyl ester (Quin 2-AM), isolated hepatocytes exhibited signs of toxicity, such as extensive lipid peroxidation and vitamin E loss and release of lactate dehydrogenase. Lipid peroxidation induced by this agent was blocked completely by cotreatment of the cells with ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, EDTA, ruthenium red, carbonyl cyanide m-chlorophenylhydrazone, desferal and trifluoperazine, and was partially inhibited by quinacrine and indomethacin. With the exception of carbonyl cyanide m-chlorophenylhydrazone and quinacrine, these agents also inhibited lactate dehydrogenase leakage. Although the results with ruthenium red suggested that Quin 2-AM may cause toxicity by altering handling of Ca++ by mitochondria, mitochondrial membrane potential was not altered in cells treated with Quin 2-AM until after toxicity occurred. Evidence of a direct, potentiative effect of Quin 2 on iron-induced lipid peroxidation was gained from experiments with liposomes. Treatment of cells with Quin 2-AM did not enhance nitro blue tetrazolium reduction, suggesting that Quin 2 did not stimulate O2- production by the cells. Direct chelation of Ca++ did not appear to be involved in the mechanism of Quin 2 toxicity, for an analog of Quin 2 that is virtually nonhydrolyzable, which greatly limits the binding of Ca++, also caused lipid peroxidation and cell death. These results suggest that Quin 2 causes toxicity by chelating iron or by activating some cellular process(es) that is dependent on the presence of iron or Ca++.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|