Abstract
Effects of methylmercury (MeHg) on whole-cell Ba++ currents in rat pheochromocytoma (PC12) cells were examined. Based on biophysical characteristics and sensitivity to omega-conotoxin GVIA and dihydropyridine agonists and antagonists, voltage-activated Ba++ currents (IBa) in PC12 cells were mediated by N- and L-type Ca++ channels. Addition of MeHg (10 microM) to the extracellular solution caused a rapid and complete block of current carried by 20 mM Ba++. The rate of block of IBa by MeHg increased in a concentration-dependent manner between 1 and 20 microM. Increasing the frequency of stimulation from 0.1 to 0.4 Hz facilitated block of IBa by MeHg. A 2-min application of 10 microM MeHg in the absence of stimulation also reduced IBa by approximately 80%. Thus, block of IBa by MeHg is not state-dependent. Additionally, MeHg blocked IBa when the membrane holding potential was -40, -70 and -90 mV, indicating that both N- and L-type Ca++ channels are blocked by MeHg. Block of IBa by MeHg was voltage-dependent at a membrane holding potential of -40 mV, but not at holding potentials of -70 and -90 mV. Decreasing the extracellular concentration of Ba++ ([Ba++]e) from 20 mM to 10 mM increased the magnitude of block by MeHg from 45.6 to 77.3%. Increasing [Ba++]e to 30 mM caused no further antagonism of block. Block of IBa by MeHg was not reversed by washing with MeHg-free solution. The ionic permeability of PC12 cell Ca++ channels was Ca++ = Sr++ greater than Ba++. In the presence of MeHg, all three divalent cations were equally permeant.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|