Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-derived relaxing factor.

J E Goldschmidt and R J Tallarida
Journal of Pharmacology and Experimental Therapeutics June 1991, 257 (3) 1136-1145;
J E Goldschmidt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Tallarida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Captopril, an angiotensin-converting enzyme inhibitor, reportedly can scavenge superoxide anion (O2-), a property attributed to its sulfhydryl group. The present investigation, using rabbit aortic rings precontracted with either norepinephrine or clonidine, was designed to determine whether captopril possesses an endothelium-dependent component of vasodilation related to its ability to protect endothelium-derived relaxing factor (EDRF) from superoxide-mediated destruction. Also studied were enalaprilat, a nonsulfhydryl angiotensin-converting enzyme-inhibitor, superoxide dismutase, and the sulfhydryl compounds glutathione (GSH), N-2-mercaptopropionylglycine (MPG) and N-acetylcysteine (NAC). Captopril, but not enalaprilat, caused dose-dependent relaxations in preconstricted aortic rings containing an intact endothelium. Rings denuded of endothelium were unresponsive to any dose of captopril. Captopril's vasodilation was not related to prostaglandin influence but was associated with an increase in cyclic GMP. Superoxide dismutase, GSH, MPG and NAC also produced endothelium-dependent relaxations similar to captopril. It was also demonstrated that endothelium-dependent relaxations to acetylcholine were enhanced by captopril, GSH, MPG and NAC but not by enalaprilat. In another set of experiments, the ability of captopril to inhibit superoxide-mediated inactivation of EDRF was examined. Pyrogallol, a potent generator of O2-, and superoxide dismutase, a scavenger of O2-, were used as a basis for comparing a possible scavenging effect of captopril. In preconstricted rings, pyrogallol elicited endothelium-dependent contractions that were attenuated by both captopril and superoxide dismutase. Similar effects were found with GSH, MPG and NAC but not with enalaprilat. These results suggest that captopril's endothelium-dependent vasodilation is due to its sulfhydryl group and the ability of the latter to scavenge O2-, thereby protecting EDRF.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 257, Issue 3
1 Jun 1991
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-derived relaxing factor.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-derived relaxing factor.

J E Goldschmidt and R J Tallarida
Journal of Pharmacology and Experimental Therapeutics June 1, 1991, 257 (3) 1136-1145;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-derived relaxing factor.

J E Goldschmidt and R J Tallarida
Journal of Pharmacology and Experimental Therapeutics June 1, 1991, 257 (3) 1136-1145;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics