Abstract
The delayed fulminant form of halothane hepatotoxicity is thought to be triggered by an immune response to haptenic adducts formed by a metabolite, trifluoroacetyl chloride. In this study we demonstrate that antibodies purified from the sera of rabbits sensitized to a trifluoroacetyl-protein adduct will cross-react with a trifluoroacetyl-phosphatidylethanolamine adduct. Trifluoroacetyl adducts of both rabbit serum albumin (TFA-RSA) and dioleoylphosphatidylethanolamine (TFA-DOPE) were prepared. The TFA-RSA was coupled to an Affigel-10 affinity column to purify hapten-selective immunoglobulin (Ig) G antibodies (anti-TFA-RSA IgG) from the sera of rabbits given i.m. injections of TFA-RSA. The TFA-DOPE was purified by high-performance liquid chromatography and the structure confirmed with direct chemical ionization mass spectrometry. Lamellar liposomes containing a mixture of 5% TFA-DOPE, 71% DOPE and 24% dioleoyl-phosphatidylcholine, as well as hexagonal phase micelles containing 5% TFA-DOPE and 95% DOPE, were prepared by sonication. Anti-TFA-RSA IgG antibodies were added to each of these lipid mixtures for 30 min, fluorescein-conjugated goat-antirabbit IgG antibodies were added next for an additional 30 min and then binding of anti-TFA-RSA IgG antibodies to TFA-DOPE was quantified by flow cytometry. Anti-TFA-RSA IgG antibodies bound to TFA-DOPE only when it was incorporated into hexagonal phase micelles. These findings suggest that TFA-phosphatidylethanolamine adducts that reside in nonlamellar domains on the hepatocyte surface could be recognition sites for anti-TFA-adduct antibodies and potentially participate in immune-mediated hepatotoxicity.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|