Abstract
The effects of imipramine on the Na+ current of guinea-pig ventricular myocytes were examined by the whole-cell clamp method. Imipramine inhibited the Na+ current with a dissociation constant value of 25 microM at a -130 mV holding potential. At 1 microM, imipramine caused a negative shift of the channel availability curve by 4.0 +/- 1.03 mV with its steepness unaffected. The inactivation time constants were not changed by 30 microM imipramine. Paired pulse experiments revealed that imipramine binds to the inactivated Na+ channels with time constants of 3.7 +/- 0.27 sec at -65 mV and 2.4 +/- 0.58 sec at -20 mV, and that it dissociates from the channels with time constants of 5.9 +/- 1.05 sec at -90 mV and 2.0 +/- 0.87 sec at -130 mV. From these paired pulse experiments, the dissociation constant for the interactions between imipramine and inactivated channels was calculated to be 0.67 microM, a value within its therapeutic plasma concentration. These slow interactions of imipramine with inactivated Na+ channels resulted in a slow onset of the frequency-dependent extrablock in the effects of imipramine on the Na+ current. Consequently, the imipramine-induced extrablock sufficient to terminate re-entrant tachyarrhythmias would not develop shortly after their initiation. Short depolarizations of 1- to 3-msec duration sustained appreciable extra blockage when a high concentration of 10 microM imipramine was used, or they were repeatedly applied at a high frequency. However, access of imipramine to the open channels seems to play a minor role in the drug-channel interactions.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|