Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Differential regulation of human basophil and lung mast cell function by adenosine.

P T Peachell, L M Lichtenstein and R P Schleimer
Journal of Pharmacology and Experimental Therapeutics February 1991, 256 (2) 717-726;
P T Peachell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Lichtenstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R P Schleimer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • ERRATUM - April 01, 1991

Abstract

Adenosine was found to modulate the activity of the human basophil and lung mast cell (HLMC) differently. In the basophil, adenosine inhibited the anti-IgE stimulated release of histamine and leukotriene C4 (LTC4) and increased total cell cyclic AMP (cAMP) levels. Substituted adenosine analogs had a rank order potency of: N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than R-phenylisopropyladenosine for the inhibition of immunoglobulin E-triggered mediator release from the basophil and increases in cAMP levels. The adenosine receptor antagonist, 8-phenyltheophylline, antagonized both the NECA-induced inhibition of mediator release and elevations in cyclic nucleotide. The purinergic transport inhibitor, dipyridamole, reversed the inhibition by adenosine of histamine release but not LTC4 generation, suggesting that these two actions are mechanistically separable. Dipyridamole failed to modify the adenosine-induced elevation in cAMP. In contrast to the findings in the basophil, the response to adenosine in the HLMC was biphasic in nature. Thus, at low concentrations of the nucleoside, adenosine potentiated the release of histamine and LTC4 from immunologically activated HLMC, whereas at higher concentrations a counteractive inhibitory process was observed. Analogs of adenosine had the same effects on HLMC; NECA was more potent than R-phenylisopropyladenosine for both the potentiating and inhibitory components of the biphasic response. Low concentrations of adenosine analogs, which potentiated secretion, initiated modest elevations in cAMP levels, whereas higher concentrations, which inhibited secretion, significantly augmented cAMP levels. Although R-phenylisopropyladenosine was almost as potent as NECA at elevating cAMP in HLMC, it was not as efficacious. The NECA-induced modulation of HLMC mediator release and elevations in cAMP were antagonized by 8-phenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 256, Issue 2
1 Feb 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential regulation of human basophil and lung mast cell function by adenosine.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Differential regulation of human basophil and lung mast cell function by adenosine.

P T Peachell, L M Lichtenstein and R P Schleimer
Journal of Pharmacology and Experimental Therapeutics February 1, 1991, 256 (2) 717-726;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Differential regulation of human basophil and lung mast cell function by adenosine.

P T Peachell, L M Lichtenstein and R P Schleimer
Journal of Pharmacology and Experimental Therapeutics February 1, 1991, 256 (2) 717-726;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics