Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Serotonergic neurons do not influence the regulation of beta adrenoceptors induced by either desipramine or isoproterenol.

J G Hensler, G A Ordway, C Gambarana, P Areso and A Frazer
Journal of Pharmacology and Experimental Therapeutics February 1991, 256 (2) 656-664;
J G Hensler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G A Ordway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Gambarana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Areso
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Frazer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It has been suggested that 5-hydroxytryptamine (serotonin)-containing neurons influence the regulation of central beta adrenoceptors caused by antidepressants. [3H]Dihydroalprenolol ( [3H] DHA) was the radioligand used in these previous studies to measure beta adrenoceptors. In this study, we compared the binding characteristics of [3H]DHA with those of [125I]iodopindolol ( [125I]PIN) and used [125I]IPIN to study effects of lesioning serotonergic nerves on the regulation of beta adrenoceptors. A comparison was made in homogenates prepared from rat frontal cortex of the specific binding of [3H]DHA with that of [125I]IPIN to beta adrenoceptors. Nonlinear regression analysis of saturation experiments of [3H]DHA binding to cortical homogenates indicated that a two-component binding model fit the data significantly better than a one-component model. A dissociation constant value of 0.47 +/- 0.16 nM and a Bmax value of 62 +/- 7 fmol/mg protein were obtained for the high-affinity site. The low-affinity site was poorly defined. Rosenthal transformations of the saturation isotherms for [3H]DHA binding were clearly curvilinear. By contrast, nonlinear regression analysis of saturation experiments of the binding of [125I]IPIN indicated that the binding of this radioligand was described adequately by a one-component model and yielded a dissociation constant value of 147 +/- 10 pM with a Bmax of 80 +/- 5 fmol/mg protein. Rosenthal transformations of the [125I]IPIN data were linear. From such data, it was inferred that [3H]DHA binds to some site in addition to beta adrenoceptors, whereas [125I]IPIN does not.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 256, Issue 2
1 Feb 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Serotonergic neurons do not influence the regulation of beta adrenoceptors induced by either desipramine or isoproterenol.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Serotonergic neurons do not influence the regulation of beta adrenoceptors induced by either desipramine or isoproterenol.

J G Hensler, G A Ordway, C Gambarana, P Areso and A Frazer
Journal of Pharmacology and Experimental Therapeutics February 1, 1991, 256 (2) 656-664;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Serotonergic neurons do not influence the regulation of beta adrenoceptors induced by either desipramine or isoproterenol.

J G Hensler, G A Ordway, C Gambarana, P Areso and A Frazer
Journal of Pharmacology and Experimental Therapeutics February 1, 1991, 256 (2) 656-664;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics