Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Cardiac adenylate cyclase activity, positive chronotropic and inotropic effects of forskolin analogs with either low, medium or high binding site affinity.

J W Hubbard, P G Conway, L C Nordstrom, H B Hartman, Y Lebedinsky, G J O'Malley and R W Kosley Jr
Journal of Pharmacology and Experimental Therapeutics February 1991, 256 (2) 621-627;
J W Hubbard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P G Conway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L C Nordstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H B Hartman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Lebedinsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G J O'Malley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R W Kosley Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A series of in vitro studies were conducted examining the adenylate cyclase stimulation, positive chronotropic and inotropic effects of forskolin and nine analogs which exhibited a range of [3H]forskolin binding site affinities (K1) from 0.020 to 3.174 microM. A significant (P less than .001) linear correlation (r = 0.94) was found between binding site affinity and adenylate cyclase stimulation (EC50) for forskolin and the nine structural analogs. Adenylate cyclase activity was also significantly correlated with the positive chronotropic and inotropic effects of these substances on isolated guinea pig atria. Compounds with K1 values between 0.020 and 1.136 microM produced concentration-dependent increases in heart rate and contractile force in isolated spontaneous and electrically paced guinea pig atria, respectively. In contrast, an analog with a K1 of 3.174 microM caused significant (P less than .05) negative chronotropic and inotropic effects at concentrations above 10 microM. The optimal separation between positive inotropic and chronotropic activity was found with compounds displaying potent [3H]forskolin binding site affinity but moderate adenylate cyclase stimulation, i.e., K1 and EC50 values of approximately 0.05 to 0.10 and 3 microM, respectively. The results of this study show that the forskolin analog, P87-7692 [7-desacetyl-7-(O-propionyl)-hydroxyl amino-carbonyl-forskolin], has marked activity with a wide separation between positive inotropic (248 +/- 41%) and chronotropic effects (43 +/- 13%) at 6.2 microM and may serve as a prototype for a forskolin-based cardiotonic.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 256, Issue 2
1 Feb 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cardiac adenylate cyclase activity, positive chronotropic and inotropic effects of forskolin analogs with either low, medium or high binding site affinity.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cardiac adenylate cyclase activity, positive chronotropic and inotropic effects of forskolin analogs with either low, medium or high binding site affinity.

J W Hubbard, P G Conway, L C Nordstrom, H B Hartman, Y Lebedinsky, G J O'Malley and R W Kosley
Journal of Pharmacology and Experimental Therapeutics February 1, 1991, 256 (2) 621-627;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cardiac adenylate cyclase activity, positive chronotropic and inotropic effects of forskolin analogs with either low, medium or high binding site affinity.

J W Hubbard, P G Conway, L C Nordstrom, H B Hartman, Y Lebedinsky, G J O'Malley and R W Kosley
Journal of Pharmacology and Experimental Therapeutics February 1, 1991, 256 (2) 621-627;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics