Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent.

P C Wong, W A Price Jr, A T Chiu, J V Duncia, D J Carini, R R Wexler, A L Johnson and P B Timmermans
Journal of Pharmacology and Experimental Therapeutics October 1990, 255 (1) 211-217;
P C Wong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W A Price Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A T Chiu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J V Duncia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D J Carini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R R Wexler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A L Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P B Timmermans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This report describes the pharmacology of (2-n-butyl-4-chloro-1- [(2'-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl]imidazole-5-carboxylic acid (EXP3174). EXP3174 is a major metabolite generated after the oral dosing of 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'-(1H- tetrazol-5-yl)biphenyl-4-yl)methyl]imidazole, potassium salt in rats. It displaced [3H]angiotensin II (AII) from its specific binding sites in rat adrenal cortical membranes with an IC50 of 3.7 x 10(-8) M. In the isolated rabbit aorta, EXP3174 caused nonparallel shifts to the right of the AII concentration-contractile response curves and reduced the maximal response by 30 to 40% with an apparent pA2 value of 10.09 and a KB value of 10(-10) M. At 10(-6) M, EXP3174 did not alter the contractile responses to norepinephrine and KCl. In the spinal pithed rat, EXP3174 at 0.03 to 0.3 mg/kg i.v. also inhibited the pressor responses to AII and angiotensin III noncompetitively and did not change the pressor responses to vasopressin and norepinephrine. When given i.v. and cumulatively to normotensive rats at 0.003 to 0.3 mg/kg, EXP3174 did not alter blood pressure but inhibited the pressor response to AII. In conscious renal artery-ligated rats, EXP3174 decreased blood pressure with an i.v. ED30 of 0.038 mg/kg and a p.o. ED30 of 0.66 mg/kg. These results demonstrate that EXP3174 is a selective and noncompetitive AII receptor antagonist and lacks agonistic effect. As EXP3174 is a potent antihypertensive agent, it may be responsible for part of the antihypertensive effect of DuP 753 in rats.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 255, Issue 1
1 Oct 1990
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent.

P C Wong, W A Price, A T Chiu, J V Duncia, D J Carini, R R Wexler, A L Johnson and P B Timmermans
Journal of Pharmacology and Experimental Therapeutics October 1, 1990, 255 (1) 211-217;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent.

P C Wong, W A Price, A T Chiu, J V Duncia, D J Carini, R R Wexler, A L Johnson and P B Timmermans
Journal of Pharmacology and Experimental Therapeutics October 1, 1990, 255 (1) 211-217;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics