Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Ca2(+)-evoked [3H]dopamine release from synaptosomes is dependent on neuronal type Ca2+ channels and is not mediated by acetylcholine, glutamate or aspartate release.

J F Bowyer and N Weiner
Journal of Pharmacology and Experimental Therapeutics August 1990, 254 (2) 664-670;
J F Bowyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Weiner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Elevation of potassium concentrations ([K+]) in the presence of Ca2+ is the most common method of evoking neurotransmitter release from synaptosomes. However, we have been investigating a method of releasing dopamine from synaptosomes that does not involve using elevated [K+]. In this paradigm of neurotransmitter release, dopamine is released from synaptosomes, previously exposed to micromolar or lower [Ca2+], by 1.25 mM Ca2+ in the presence of non-depolarizing [K+] (4.5 mM). The present experiments characterize the Ca2+ channel(s) involved in the Ca2(+)-evoked release of dopamine from synaptosomes, and determine whether the release is mediated by acetylcholine, glutamate or aspartate. omega-Conotoxin (10 nM), which blocks N-, L- and possibly T-type voltage-sensitive Ca2+ channels (VSCC), inhibited the Ca2(+)-evoked [3H]dopamine release from either striatal or olfactory tubercle synaptosomes to less than 50% of control. Neither 1 microM nifedipine nor 1 microM verapamil, which block L-type VSCC, affected Ca2(+)-evoked release. The N- and T-type VSCC blocker neomycin and the nonspecific Ca2+ antagonist, cobalt2+, inhibited release to a greater extent than omega-conotoxin. At 1 mM, both compounds inhibited release to approximately 30% of control. Neither the excitatory neurotransmitter glutamate nor aspartate (2mM) affected 1 microM LY-171555 (a dopamine D2 agonist) inhibition of Ca2(+)-evoked [3H]dopamine release. Also, the glutamate antagonist, glutamic acid diethyl ester, did not affect either Ca2(+)-evoked release or 1 microM LY-171555 inhibition thereof. The nicotinic antagonist hexamethonium (10 microM) and the muscarinic antagonist atropine (1 microM) were also ineffective in inhibiting Ca2(+)-evoked release or LY-171555 inhibition of release.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 254, Issue 2
1 Aug 1990
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ca2(+)-evoked [3H]dopamine release from synaptosomes is dependent on neuronal type Ca2+ channels and is not mediated by acetylcholine, glutamate or aspartate release.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ca2(+)-evoked [3H]dopamine release from synaptosomes is dependent on neuronal type Ca2+ channels and is not mediated by acetylcholine, glutamate or aspartate release.

J F Bowyer and N Weiner
Journal of Pharmacology and Experimental Therapeutics August 1, 1990, 254 (2) 664-670;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Ca2(+)-evoked [3H]dopamine release from synaptosomes is dependent on neuronal type Ca2+ channels and is not mediated by acetylcholine, glutamate or aspartate release.

J F Bowyer and N Weiner
Journal of Pharmacology and Experimental Therapeutics August 1, 1990, 254 (2) 664-670;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics