Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct.

M Hiramatsu, Y Kumagai, S E Unger and A K Cho
Journal of Pharmacology and Experimental Therapeutics August 1990, 254 (2) 521-527;
M Hiramatsu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kumagai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S E Unger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A K Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The in vitro conversion of (+)-3,4-methylenedioxymethamphetamine and (-)-3,4-methylenedioxymethamphetamine to the corresponding catecholamine, 3,4-dihydroxymethamphetamine (N-methyl-alpha-methyldopamine), by rat liver microsomes was examined. Metabolite formation was monitored after short-term incubations using high-performance liquid chromatography-electrochemical detection to determine concentrations of the catecholamine. The formation of N-methyl-alpha-methyldopamine exhibited enantioselectivity and levels were significantly higher after incubation of the (+)-isomer. The reaction appears to be cytochrome P-450 dependent as it was sensitive to SKF 525A and carbon monoxide. The catecholamine was unstable and was metabolized rapidly to a compound capable of forming an adduct with glutathione (GSH) and other thiol compounds. This second oxidation did not appear to be cytochrome P-450-dependent but required NADPH and microsomal protein. Catecholamine oxidation was inhibited by superoxide dismutase and by reducing agents. The same catecholamine oxidation product, characterized as the GSH adduct, could be generated by a xanthine-xanthine oxidase mixture and by tyrosinase. Mass spectral data showed that it was a 1:1 amine GSH adduct. These results indicate that MDMA is oxidized by cytochrome P-450 to the catechol and the catecholamine oxidized by superoxide to a quinone to which GSH or other thiol functions add. The formation of this quinone and its thiol adducts may account for some of the irreversible actions of this compound on serotonergic neurons.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 254, Issue 2
1 Aug 1990
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct.

M Hiramatsu, Y Kumagai, S E Unger and A K Cho
Journal of Pharmacology and Experimental Therapeutics August 1, 1990, 254 (2) 521-527;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct.

M Hiramatsu, Y Kumagai, S E Unger and A K Cho
Journal of Pharmacology and Experimental Therapeutics August 1, 1990, 254 (2) 521-527;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics