Abstract
The effects of MK-801 [( +]-5-methyl-10,11-dihydro-5H-di-benzo[a, d]cyclohepten-5,10-imine) on peripheral and central nicotinic receptors were studied using electrophysiological and biochemical techniques. MK-801 depressed the peak amplitude and accelerated the decay of end-plate currents. The drug (1-10 microM) decreased the frequency of activation of acetylcholine (ACh)-induced single-channel currents in addition to shortening the mean open and burst times of channels activated by either ACh or (+)anatoxin-a (AnTX). MK-801 (10-40 microM) depressed the single potentials and trains of ACh and AnTX-induced potentials in chronically denervated rat soleus muscles. MK-801 blocked the twitch responses (20-100 microM) of both frog sartorius and rat diaphragm muscles evoked by stimulation of their respective nerves. Also this drug (less than 1 microM) decreased the frequency of channels activated by AnTX or ACh in outside-out patch membranes of rat retinal ganglion cells with minimal changes in the channel open time. MK-801 (10-25 microM) depressed (-)nicotine-evoked gamma-amino[2,3-3H]butyric acid release from rat hippocampal synaptosomes; however, it failed to affect the binding of [3H](-)nicotine to brain membranes and also failed to interfere with the binding of [125I]alpha-bungarotoxin to either frog muscle or Torpedo membranes. On the other hand, MK-801 inhibited the binding of [3H]perhydrohistrionicotoxin to Torpedo membranes and such an effect was more pronounced in the presence of carbamylcholine. Neither AnTX nor any other nicotinic agonist increased the binding of [3H]MK-801 to the N-methyl-D-aspartate receptor ion channel complex. The actions of MK-801 were evident at concentrations comparable with those needed to block N-methyl-D-aspartate receptors. These results demonstrate the existence of at least three different types of nicotinic AChR, all of which were blocked noncompetitively by MK-801.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|