Abstract
The sensitivity of rabbit isolated superior mesenteric artery to Ca++ antagonists was examined under various conditions. Relaxation dose-response curves for D600 or nifedipine were generated, and IC50 values were calculated. In the first series of experiments, D600 or nifedipine IC50 was found to be 20-25-fold greater for norepinephrine (NE, 5 microM) contraction than for 80 nM K+ contraction. Even when the tissues were depolarized with 80 mM K+ before NE contraction, D600 or nifedipine IC50 still remained significantly greater compared with 80 mM K+ alone and remained closer to that during NE alone. Also a protocol was designed to study NE-induced phasic contraction in EGTA-physiological salt solution (a functional indicator of intracellular Ca++ release) as well as NE-induced sustained contraction after readdition of Ca++. The effects of varying [K+]ex (0-80 nM range) on NE-induced [Ca++]i release as well as on the D600 IC50 for NE contraction was studied. Increasing [K+]ex was found to enhance NE-sensitive [Ca++]i release and lower the D600 IC50 for NE contraction. Thus, conditions causing an increase in the ability of NE to cause [Ca++]i release were associated with an increase in the sensitivity of NE contraction to D600. These data provide functional evidence that the receptor-agonist sensitive Ca++ influx process in vascular smooth muscle is not solely regulated by changes in membrane potential. Additional mechanisms, such as a modulatory role of [Ca++]i release, in this process are implicated.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|