Abstract
Intravenously administered 5-HT and the 5-HT3 selective agonist, 2CH3-5-HT, and the 5-HT2 selective agonist, alpha-CH3-5-HT, transiently increased heart rate in conscious, instrumented dogs. 5-HT, alpha-CH3-5-HT and 2CH3-5-HT increased systolic blood pressure in conscious dogs. The increase in blood pressure produced by alpha-CH3-5-HT was blocked by the 5-HT2 selective antagonist, LY53857, supporting a role for vascular 5-HT2 receptors in the pressor response to these amines. In contrast, LY53857 did not antagonize tachycardia produced by 2CH3-5-HT. Furthermore, propranolol also did not block 2CH3-5-HT-induced tachycardia, indicating that an indirect neuronal effect to release norepinephrine cannot explain the increase in heart rate to 2CH3-5-HT. Tachycardia to 2CH3-5-HT (as well as to isoproterenol) was modestly inhibited, but never abolished by interruption of the autonomic nervous system with atropine or hexamethonium. 5-HT3 receptor antagonists, zacopride, ICS 205-930 and GR38032F, dose-dependently blocked the tachycardia and pressor response to 2CH3-5-HT. These data establish the presence of a 5-HT3 receptor mediating a direct positive chronotropic effect of 5-HT in conscious dogs, an effect that depends, only minimally, on the presence of an intact autonomic nervous system.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|