Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

D2 dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells.

L Bigornia, C N Allen, C R Jan, R A Lyon, M Titeler and A S Schneider
Journal of Pharmacology and Experimental Therapeutics February 1990, 252 (2) 586-592;
L Bigornia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C N Allen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C R Jan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Lyon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Titeler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A S Schneider
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although dopamine is known to be present in sympathetic ganglia, its role and mode of action as a peripheral neurotransmitter are still poorly understood. Dopaminergic agonists have been shown to inhibit adrenal catecholamine release and calcium uptake. However, the specific dopamine receptor subtype mediating these effects and the receptor transduction mechanism remain unknown. We now provide evidence demonstrating 1) that slowly inactivating, voltage-gated calcium channels serve as a target site for dopaminergic modulation of chromaffin cell function and 2) that it is the D2 receptor subtype which mediates dopaminergic inhibitory effects on catecholamine secretion, 45Ca uptake and voltage-gated calcium currents. Whole cell patch clamp electrophysiological techniques were used to monitor directly voltage-gated Ca++ channels. The D2 agonist apomorphine but not the D1 agonist SKF 38393 reduced reversibly a slowly inactivating, voltage-gated calcium current in cultured chromaffin cells and this effect was blocked by the D2 receptor antagonist haloperidol. The presence of D2 but not D1 dopamine receptors on chromaffin cell membranes was demonstrated by radioligand binding methods, using the specific D1 and D2 receptor radioligands, [3H]SCH23390 and [3H]N-methylspiperone, respectively. Nicotine- and KCl (60 mM)-evoked catecholamine secretion and 45Ca uptake were inhibited by the D2 agonist, apomorphine, but not by the D1 agonist, SKF 38393. These inhibitory effects were prevented by the D2 antagonist, sulpiride, but not by the D1 antagonist, SCH 23390. D2 dopamine receptors appear to function as inhibitory modulators of adrenal catecholamine secretion with a mode of action involving inhibition of calcium channel currents.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 252, Issue 2
1 Feb 1990
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
D2 dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

D2 dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells.

L Bigornia, C N Allen, C R Jan, R A Lyon, M Titeler and A S Schneider
Journal of Pharmacology and Experimental Therapeutics February 1, 1990, 252 (2) 586-592;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

D2 dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells.

L Bigornia, C N Allen, C R Jan, R A Lyon, M Titeler and A S Schneider
Journal of Pharmacology and Experimental Therapeutics February 1, 1990, 252 (2) 586-592;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics